2 research outputs found

    Proximate Analysis of <i>Moringa oleifera</i> Leaves and the Antimicrobial Activities of Successive Leaf Ethanolic and Aqueous Extracts Compared with Green Chemically Synthesized Ag-NPs and Crude Aqueous Extract against Some Pathogens

    No full text
    Research on the use of different parts of the Moringa oleifera plant as a nutritional and pharmaceutical resource for human and animals has increased in recent years. This study aimed to investigate the chemical composition and the TPCs and TFCs of Moringa leaves, the antimicrobial activities of Moringa successive ethanolic, aqueous, crude aqueous extracts, and green-chemically synthesized characterized Ag-NPs. The results indicated that the ethanolic extract recorded the highest activity against E. coli. On the other side, the aqueous extract showed higher activity, and its effects ranged from 0.03 to 0.33 mg/mL against different strains. The MIC values of Moringa Ag-NPs against different pathogenic bacteria ranged from 0.05 mg/mL to 0.13 mg/mL, and the activity of the crude aqueous extract ranged from 0.15 to 0.83 mg/mL. For the antifungal activity, the ethanolic extract recorded the highest activity at 0.04 mg/mL, and the lowest activity was recorded at 0.42 mg/mL. However, the aqueous extract showed effects ranging from 0.42 to 1.17 mg/mL. Moringa Ag-NPs showed higher activity against the different fungal strains than the crude aqueous extract, and they ranged from 0.25 to 0.83 mg/mL. The MIC values of the Moringa crude aqueous extract ranged from 0.74 to 3.33 mg/mL. Moringa Ag-NPs and their crude aqueous extract may be utilized to boost antimicrobial attributes

    Studying the Antioxidant and the Antimicrobial Activities of Leaf Successive Extracts Compared to the Green-Chemically Synthesized Silver Nanoparticles and the Crude Aqueous Extract from <i>Azadirachta indica</i>

    No full text
    Azadirachta indica has several medicinal uses, especially its leaves. Over 4000 years ago, Ayurvedic medicine used it for its therapeutic benefits. This study examined the biological activity of Neem crude extracts and green-chemically produced Ag-NPs. TPCs and TFCs were measured for polyphenolic burden in consecutive extracts. DPPH, ABTS, and FRAP experiments measured antioxidant and antimicrobial activity against seven strains of food-borne pathogenic bacteria and eight mycotoxigenic fungi. At 1000 μg/mL, ethanolic and aqueous extracts of Neem leaves had 80.10% and 69.41% in DPPH and 71.42% and 74.61% in ABTS assays for the antioxidant activity, compared to 93.58% for BHT. At 800 μg/mL, both extracts showed antioxidant activity with 57.52 and 57.87 μM in the FRAP assay, compared to 139.97 μM for Ascorbic acid. Both extracts demonstrated antimicrobial activity with 0.02 to 0.35 mg/mL as antibacterials, 0.03 to 2.17 mg/mL as antifungals, and 0.04 to 0.42 mg/mL as antibacterials. Compared to Neem crude extract, Neem Ag-NPs had the lowest MIC values as antibacterials and antifungals at 0.05 to 0.07 mg/mL and 0.07 to 0.20 mg/mL, respectively. Neem Ag-NPs and crude extract boost antioxidant and antibacterial properties
    corecore