22 research outputs found

    Neurogenic dysfunction of the lower urinary tract in infectious and inflammatory diseases of the spine: is there a correlation with clinical and radiological variants of myelopathy? Preliminary result of the analysis of a single-center cohort

    Get PDF
    Objective. To study the relationship between clinical and radiation variants of myelopathy and types of the neurogenic dysfunction of the lower urinary tract in patients with infectious spondylitis. Material and Methods. A single-center cohort observational study was conducted with the analysis of medical records and a prospective examination of 20 patients with infectious spondylitis complicated by neurogenic dysfunction of the lower urinary tract. Results. Infectious spondylitis can be complicated by the development of various urodynamic disorders, including neurogenic detrusor hyperactivity (30 %), its combination with detrusor-sphincter dissinergia (30 %) and a decrease in detrusor contractility (40 %). In 50 % of patients, an urodynamic examination revealed an increase in detrusor pressure of more than 40 cm water. There was no connection between the development of any type of lower urinary tract dysfunction and MRI types of myelopathy according to Vendatam, as well as between the level of spinal cord compression and the severity of neurological disorders according to AIS. Conclusion. The results of the study do not confirm the existence of a relationship between the various characteristics of myelopathy in infectious spondylitis and the results of urodynamic examination. The limitation of the reliability of the results is the small number of observations. Studies with a larger sample are required to assess the relationship between the clinical and radiation characteristics of myelopathy and variants of neurogenic dysfunction of the lower urinary tract in patients with infectious spondylitis

    Investigation of oncolytic potential of vaccine strains of yellow fever and tick-borne encephalitis viruses against glioblastoma and pancreatic carcinoma cell lines

    Get PDF
    Introduction. Flaviviruses, possessing natural neurotropicity could be used in glioblastoma therapy using attenuated strains or as a delivery system for antitumor agents in an inactivated form. Objective. To investigate the sensitivity of glioblastoma and pancreatic carcinoma cell lines to vaccine strains of yellow fever and tick-borne encephalitis viruses. Materials and methods. Cell lines: glioblastoma GL-6, T98G, LN-229, pancreatic carcinoma MIA RaCa-2 and human pancreatic ductal carcinoma PANC-1. Viral strains: 17D yellow fever virus (YF), Sofjin tick-borne encephalitis virus (TBEV). Virus concentration were determined by plaque assay and quantitative PCR. Determination of cell sensitivity to viruses by MTT assay. Results. 17D YF was effective only against pancreatic carcinoma tumor cells MIA Paca-2 and had a limited effect against PANC-1. In glioblastoma cell lines (LN229, GL6, T98G), virus had no oncolytic effect and the viral RNA concentration fell in the culture medium. Sofjin TBEV showed CPE50 against MIA Paca-2 and a very limited cytotoxic effect against PANC-1. However, it had no oncolytic effect against glioblastoma cell lines (LN229, T98G and GL6), although virus reproduction continued in these cultures. For the GL6 glioblastoma cell line, the viral RNA concentration at the level with the infection dose was determined within 13 days, despite medium replacement, while in the case of the LN229 cell line, the virus concentration increased from 1 × 109 to 1 × 1010 copies/ml. Conclusion. Tumor behavior in organism is more complex and is determined by different microenvironmental factors and immune status. In the future, it is advisable to continue studying the antitumor oncolytic and immunomodulatory effects of viral strains 17D YF and Sofjin TBEV using in vivo models

    Genotyping of Capreolus pygargus Fossil DNA from Denisova Cave Reveals Phylogenetic Relationships between Ancient and Modern Populations

    Get PDF
    BACKGROUND: The extant roe deer (Capreolus Gray, 1821) includes two species: the European roe deer (C. capreolus) and the Siberian roe deer (C. pygargus) that are distinguished by morphological and karyotypical differences. The Siberian roe deer occupies a vast area of Asia and is considerably less studied than the European roe deer. Modern systematics of the Siberian roe deer remain controversial with 4 morphological subspecies. Roe deer fossilized bones are quite abundant in Denisova cave (Altai Mountains, South Siberia), where dozens of both extant and extinct mammalian species from modern Holocene to Middle Pleistocene have been retrieved. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed a 629 bp fragment of the mitochondrial control region from ancient bones of 10 Holocene and four Pleistocene Siberian roe deer from Denisova cave as well as 37 modern specimen belonging to populations from Altai, Tian Shan (Kyrgyzstan), Yakutia, Novosibirsk region and the Russian Far East. Genealogical reconstructions indicated that most Holocene haplotypes were probably ancestral for modern roe deer populations of Western Siberia and Tian Shan. One of the Pleistocene haplotypes was possibly ancestral for modern Yakutian populations, and two extinct Pleistocene haplotypes were close to modern roe deer from Tian Shan and Yakutia. Most modern geographical populations (except for West Siberian Plains) are heterogeneous and there is some tentative evidence for structure. However, we did not find any distinct phylogenetic signal characterizing particular subspecies in either modern or ancient samples. CONCLUSION/SIGNIFICANCE: Analysis of mitochondrial DNA from both ancient and modern samples of Siberian roe deer shed new light on understanding the evolutionary history of roe deer. Our data indicate that during the last 50,000 years multiple replacements of populations of the Siberian roe deer took place in the Altai Mountains correlating with climatic changes. The Siberian roe deer represent a complex and heterogeneous species with high migration rates and without evident subspecies structure. Low genetic diversity of the West Siberian Plain population indicates a recent bottleneck or founder effect

    A modular assembly cloning technique (aided by the BIOF software tool) for seamless and error-free assembly of long DNA fragments

    No full text
    Abstract Background Molecular cloning of DNA fragments >5 kbp is still a complex task. When no genomic DNA library is available for the species of interest, and direct PCR amplification of the desired DNA fragment is unsuccessful or results in an incorrect sequence, molecular cloning of a PCR-amplified region of the target sequence and assembly of the cloned parts by restriction and ligation is an option. Assembled components of such DNA fragments can be connected together by ligating the compatible overhangs produced by different restriction endonucleases. However, designing the corresponding cloning scheme can be a complex task that requires a software tool to generate a list of potential connection sites. Findings The BIOF program presented here analyzes DNA fragments for all available restriction enzymes and provides a list of potential sites for ligation of DNA fragments with compatible overhangs. The cloning scheme, which is called modular assembly cloning (MAC), is aided by the BIOF program. MAC was tested on a practical dataset, namely, two non-coding fragments of the translation elongation factor 1 alpha gene from Chinese hamster ovary cells. The individual fragment lengths exceeded 5 kbp, and direct PCR amplification produced no amplicons. However, separation of the target fragments into smaller regions, with downstream assembly of the cloned modules, resulted in both target DNA fragments being obtained with few subsequent steps. Conclusions Implementation of the MAC software tool and the experimental approach adopted here has great potential for simplifying the molecular cloning of long DNA fragments. This approach may be used to generate long artificial DNA fragments such as in vitro spliced cDNAs.</p

    Promoter from Chinese hamster elongation factor-1a gene and Epstein-Barr virus terminal repeats concatemer fragment maintain stable high-level expression of recombinant proteins

    No full text
    Background The Chinese hamster ovary (CHO) cell line is the main host for the high-titer production of therapeutic and diagnostic proteins in the biopharmaceutical industry. In most cases, plasmids for efficient protein expression in CHO cells are based on the cytomegalovirus (CMV) promoter. The autologous Chinese hamster eukaryotic translation elongation factor 1α (EEF1A1) promoter is a viable alternative to the CMV promoter in industrial applications. The EEF1A1 promoter and its surrounding DNA regions proved to be effective at maintaining high-level and stable expression of recombinant proteins in CHO cells. EEF1A1-based plasmids’ large size can lead to low transfection efficiency and hamper target gene amplification. We hypothesized that an efficient EEF1A1-based expression vector with a long terminal repeat fragment from the Epstein-Barr virus (EBVTR) could be truncated without affecting promoter strength or the long-term stability of target gene expression. Methods We made a series of deletions in the downstream flanking region of the EEF1A1 gene, and then in its upstream flanking region. The resulting plasmids, which coded for the enhanced green fluorescent protein (eGFP), were tested for the level of eGFP expression in the populations of stably transfected CHO DG44 cells and the stability of eGFP expression in the long-term culture in the absence of selection agents. Results It was shown that in the presence of the EBVTR fragment, the entire downstream flanking region of the EEF1A1 gene could be excluded from the plasmid vector. Shortening of the upstream flanking region of the EEF1A1 gene to a length of 2.5 kbp also had no significant effect on the level of eGFP expression or long-term stability. The EBVTR fragment significantly increased expression stability for both the CMV and EEF1A1 promoter-based plasmids, and the expression level drop during the two-month culture was more significant for both CMV promoter-based plasmids. Conclusion Target protein expression stability for the truncated plasmid, based on the EEF1A1 gene and EBVTR fragment, is sufficient for common biopharmaceutical applications, making these plasmid vectors a viable alternative to conventional CMV promoter-based vectors

    High-level expression of the monomeric SARS-CoV-2 S protein RBD 320-537 in stably transfected CHO cells by the EEF1A1-based plasmid vector.

    No full text
    The spike (S) protein is one of the three proteins forming the coronaviruses' viral envelope. The S protein of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has a spatial structure similar to the S proteins of other mammalian coronaviruses, except for a unique receptor-binding domain (RBD), which is a significant inducer of host immune response. Recombinant SARS-CoV-2 RBD is widely used as a highly specific minimal antigen for serological tests. Correct exposure of antigenic determinants has a significant impact on the accuracy of such tests-the antigen has to be correctly folded, contain no potentially antigenic non-vertebrate glycans, and, preferably, should have a glycosylation pattern similar to the native S protein. Based on the previously developed p1.1 vector, containing the regulatory sequences of the Eukaryotic translation elongation factor 1 alpha gene (EEF1A1) from Chinese hamster, we created two expression constructs encoding SARS-CoV-2 RBD with C-terminal c-myc and polyhistidine tags. RBDv1 contained a native viral signal peptide, RBDv2 -human tPA signal peptide. We transfected a CHO DG44 cell line, selected stably transfected cells, and performed a few rounds of methotrexate-driven amplification of the genetic cassette in the genome. For the RBDv2 variant, a high-yield clonal producer cell line was obtained. We developed a simple purification scheme that consistently yielded up to 30 mg of RBD protein per liter of the simple shake flask cell culture. Purified proteins were analyzed by polyacrylamide gel electrophoresis in reducing and non-reducing conditions and gel filtration; for RBDv2 protein, the monomeric form content exceeded 90% for several series. Deglycosylation with PNGase F and mass spectrometry confirmed the presence of N-glycosylation. The antigen produced by the described technique is suitable for serological tests and subunit vaccine studies

    Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from <i>Aralia elata</i> var. <i>mandshurica</i> (Rupr. & Maxim.) J. Wen

    No full text
    The roots of the medicinal plant Aralia elata are rich in biologically active natural products, with triterpene saponins constituting one of their major groups. These metabolites can be efficiently extracted by methanol and ethanol. Due to their low toxicity, natural deep eutectic solvents (NADES) were recently proposed as promising alternative extractants for the isolation of natural products from medicinal plants. However, although NADES-based extraction protocols are becoming common in routine phytochemical work, their application in the isolation of triterpene saponins has not yet been addressed. Therefore, here, we address the potential of NADES in the extraction of triterpene saponins from the roots of A. elata. For this purpose, the previously reported recoveries of Araliacea triterpene saponins in extraction experiments with seven different acid-based NADES were addressed by a targeted LC-MS-based quantitative approach for, to the best of our knowledge, the first time. Thereby, 20 triterpene saponins were annotated by their exact mass and characteristic fragmentation patterns in the total root material, root bark and root core of A. elata by RP-UHPLC-ESI-QqTOF-MS, with 9 of them being identified in the roots of this plant for the first time. Triterpene saponins were successfully extracted from all tested NADES, with the highest efficiency (both in terms of the numbers and recoveries of individual analytes) achieved using a 1:1 mixture of choline chloride and malic acid, as well as a 1:3 mixture of choline chloride and lactic acid. Thereby, for 13 metabolites, NADES were more efficient extractants in comparison with water and ethanol. Our results indicate that new, efficient NADES-based extraction protocols, giving access to high recoveries of triterpene saponins, might be efficiently employed in laboratory practice. Thus, our data open the prospect of replacing alcohols with NADES in the extraction of A. elata roots

    Drug Transport System Based on Phospholipid Nanoparticles: Production Technology and Characteristics

    No full text
    One of the current trends in modern pharmaceuticals is the supply of drugs by transport systems. The use of delivery systems allows to increase the therapeutic efficacy, tolerability, and safety of drug therapy. Liposomes, polymer nanoparticles, carbon nanoparticles, blood cells, metal nanoparticles, oxides, etc., are used as transport systems. This work is aimed at obtaining a finished technological product based on soy phospholipids with particle size in the nanometer range and reproducible characteristics (size, charge). For this purpose, we carried out investigations to select the optimal conditions of technological process. The developed technology makes it possible to obtain phospholipid nanoparticles without the use of any solubilizers and/or surfactants, which increases its practical relevance for further work. The versatility of the technology is demonstrated by the example of incorporation of drugs of various chemical nature and pharmacotherapeutic groups

    High-level expression of biologically active human follicle stimulating hormone in the Chinese hamster ovary cell line by a pair of tricistronic and monocistronic vectors.

    No full text
    Recombinant human follicle stimulating hormone (FSH), produced in Chinese hamster ovary (CHO) cells, is widely used for treatment of fertility disorders and is subject to biosimilars development. Cell lines with high specific productivities may simplify the FSH production process. Here, we used our previously established expression system based on vector p1.1 to create new cell lines secreting heterodimeric FSH protein. To this end, we linked open reading frames of both FSH subunits by the wild-type internal ribosome entry site from the encephalomyocarditis virus (EMCV IRES). Intact and double-negative for the dihydrofolate reductase CHO cells were stably transfected by the FSH-coding plasmids. Stably transfected intact cells showed higher level of the FSH secretion and were utilized for subsequent methotrexate-driven transgene amplification, which doubled their productivity. The excess of the free α-subunit was corrected by transfecting the cells by the additional p1.1-based plasmid encoding the β-subunit of the FSH. Clonal cell lines obtained secreted mostly the heterodimeric FSH and possessed specific productivities up to 12.3±1.7 pg/cell/day. Candidate clonal cell line C-P1.3-FSH-G4 maintained a constant specific productivity for at least 2 months of culturing without the section pressure. The resulting FSH protein conformed to the international pharmaceutical quality criteria as evidenced by the receptor binding kinetics, distribution pattern of hormone isoforms and biological activity. In conclusion, our expression system offers a simple and cost-effective approach to production of FSH

    Chlorin e6 Phospholipid Delivery System Featuring APN/CD13 Targeting Peptides: Cell Death Pathways, Cell Localization, In Vivo Biodistribution

    No full text
    We have previously designed a phospholipid delivery system for chlorin e6 to increase the efficacy of photodynamic therapy involving a second-generation photosensitizer. Further research into the matter led to double modification of the obtained nanoparticles with ligands exhibiting targeting and cell-penetrating effects: an NGR-containing peptide and heptaarginine (R7), respectively. This study investigated the cell death pathway on HT-1080 tumor cells after treatment with the proposed compositions: the chlorin e6 phospholipid composition and the two-peptide chlorin e6 phospholipid composition. It was demonstrated that most of the cells died by apoptosis. Colocalization analysis of chlorin e6 in the phospholipid composition with two peptides showed mitochondria are one of the targets of the photosensitizer. An HT-1080 tumor-bearing mouse model was used to evaluate the biodistribution of the drug in tumor, liver, and kidney tissues after administration of the study compositions in comparison with free chlorin e6. The photosensitizer mostly accumulated in the tumor tissue of mice administered the phospholipid compositions, and accumulation was increased 2-fold with the peptide-containing composition and approximately 1.5-fold with the unenhanced composition, as compared with free chlorin e6. The enhancement of the chlorin e6 phospholipid composition with targeting and cell-penetrating peptides was found to be effective both in vitro and in vivo
    corecore