20 research outputs found

    Effects of general anesthetics on visceral pain transmission in the spinal cord

    Get PDF
    Current evidence suggests an analgesic role for the spinal cord action of general anesthetics; however, the cellular population and intracellular mechanisms underlying anti-visceral pain by general anesthetics still remain unclear. It is known that visceral nociceptive signals are transmited via post-synaptic dorsal column (PSDC) and spinothalamic tract (STT) neuronal pathways and that the PSDC pathway plays a major role in visceral nociception. Animal studies report that persistent changes including nociception-associated molecular expression (e.g. neurokinin-1 (NK-1) receptors) and activation of signal transduction cascades (such as the protein kinase A [PKA]-c-AMP-responsive element binding [CREB] cascade)-in spinal PSDC neurons are observed following visceral pain stimulation. The clinical practice of interruption of the spinal PSDC pathway in patients with cancer pain further supports a role of this group of neurons in the development and maintenance of visceral pain. We propose the hypothesis that general anesthetics might affect critical molecular targets such as NK-1 and glutamate receptors, as well as intracellular signaling by CaM kinase II, protein kinase C (PKC), PKA, and MAP kinase cascades in PSDC neurons, which contribute to the neurotransmission of visceral pain signaling. This would help elucidate the mechanism of antivisceral nociception by general anesthetics at the cellular and molecular levels and aid in development of novel therapeutic strategies to improve clinical management of visceral pain

    Aromatic Bisabolenes From An Australian Marine Sponge, Arenochalina Sp

    No full text
    Three new isomeric sesquiterpenes 6, 7, and 8 have been isolated from an Australian marine sponge, Arenochalina sp., and their structures determined by spectroscopic analysis and chemical correlation

    In search of biomarkers for autism: scientific, social and ethical challenges

    No full text
    There is widespread hope that the discovery of valid biomarkers for autism will both reveal the causes of autism and enable earlier and more targeted methods for diagnosis and intervention. However, growing enthusiasm about recent advances in this area of autism research needs to be tempered by an awareness of the major scientific challenges and the important social and ethical concerns arising from the development of biomarkers and their clinical application. Collaborative approaches involving scientists and other stakeholders must combine the search for valid, clinically useful autism biomarkers with efforts to ensure that individuals with autism and their families are treated with respect and understanding
    corecore