2,871 research outputs found

    Space-Time Sampling for Network Observability

    Full text link
    Designing sparse sampling strategies is one of the important components in having resilient estimation and control in networked systems as they make network design problems more cost-effective due to their reduced sampling requirements and less fragile to where and when samples are collected. It is shown that under what conditions taking coarse samples from a network will contain the same amount of information as a more finer set of samples. Our goal is to estimate initial condition of linear time-invariant networks using a set of noisy measurements. The observability condition is reformulated as the frame condition, where one can easily trace location and time stamps of each sample. We compare estimation quality of various sampling strategies using estimation measures, which depend on spectrum of the corresponding frame operators. Using properties of the minimal polynomial of the state matrix, deterministic and randomized methods are suggested to construct observability frames. Intrinsic tradeoffs assert that collecting samples from fewer subsystems dictates taking more samples (in average) per subsystem. Three scalable algorithms are developed to generate sparse space-time sampling strategies with explicit error bounds.Comment: Submitted to IEEE TAC (Revised Version

    Optical Frequency Mixing Through Nanoantenna Enhanced Difference Frequency Generation: Metatronic Mixer

    Get PDF
    A design for a subwavelength all-optical frequency mixer is proposed. The method relies on enhanced difference-frequency generation, which is achieved in two steps with the help of plasmonic nanoantennas. The interaction of the two input signals with the nonlinear material is increased through the use of input nanoantennas, which focus the incident energy of two different frequencies onto the nanoparticle formed by a nonlinear material. Next, the difference-frequency emission is enhanced through the Purcell effect by the use of a separate output nanoantenna that is resonant at the difference frequency. The application of this twofold approach allows for a significant enhancement in the difference-frequency generation efficiency. Simulation results are presented highlighting the features of the method. This multi-element nanostructure is indeed an optical mixer circuit element in the metatronic paradigm

    Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors

    Get PDF
    We present some ideas for synthesizing nanocircuit elements in the optical domain using plasmonic and non-plasmonic nanoparticles. Three basic circuit elements, i.e., nano-inductors, nano-capacitors, and nano-resistors, are discussed in terms of small nanostructures with different material properties. Coupled nanocircuits and parallel and series combinations are also envisioned, which may provide road maps for the synthesis of more complex nanocircuits in the IR and visible bands. Ideas for the optical implementation of right-handed and left-handed nano-transmission lines are also forecasted.Comment: 14 pages, 5 figures, submitted to Physical Review Letter

    Fuel premixing module for gas turbine engine combustor

    Get PDF
    A fuel-air premixing module is designed to reduce emissions from a gas turbine engine. In one form, the premixing module includes a central pilot premixer module with a main premixer module positioned thereround. Each of the portions of the fuel-air premixing module include an axial inflow swirler with a plurality of fixed swirler vanes. Fuel is injected into the main premixer module between the swirler vanes of the axial inflow swirler and at an acute angle relative to the centerline of the premixing module

    The Dutch version of the Child Posttraumatic Cognitions Inventory:validation in a clinical sample and a school sample

    Get PDF
    With the inclusion of trauma-related cognitions in the DSM-5 criteria for posttraumatic stress disorder (PTSD), the assessment of these cognitions has become essential. Therefore, valid tools for the assessment of these cognitions are warranted

    Dynamical Theory of Artificial Optical Magnetism Produced by Rings of Plasmonic Nanoparticles

    Get PDF
    We present a detailed analytical theory for the plasmonic nanoring configuration first proposed in [A. Alu, A. Salandrino, N. Engheta, Opt. Expr. 14, 1557 (2006)], which is shown to provide negative magnetic permeability and negative index of refraction at infrared and optical frequencies. We show analytically how the nanoring configuration may provide superior performance when compared to some other solutions for optical negative index materials, offering a more 'pure' magnetic response at these high frequencies, which is necessary for lowering the effects of radiation losses and absorption. Sensitivity to losses and the bandwidth of operation of this magnetic inclusion are also investigated in details and compared with other available setups.Comment: 34 pages, 3 figure
    • …
    corecore