10 research outputs found

    Toxicity, Antioxidant Activity, and Phytochemicals of Basil (Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan

    Get PDF
    Basil (Ocimum basilicum L.) is one of the most common aromatic herbs, a rich source of bioactive compounds, and is used extensively to add aroma and flavor to food. The leaves, both in fresh and dried form, are used as a culinary ingredient in different cultures. O. basilicum is also famous for its therapeutic potential and preservation effects. The present study investigated the cytotoxicity of basil at three different growth stages (GS), i.e., GS-1 (58 days of growth), GS-2 (69 days of growth), and GS-3 (93 days of growth) using the brine shrimp lethality assay. The results revealed that cytotoxicity was influenced by GS and the concentration of extracts. Aqueous extracts of basil at a concentration of 10 to 1000 µg/mL did not show notable toxicity. The lowest mortality rate, i.e., 8.9%, was recorded for GS-2 at the highest tested dose of basil extracts. The mortality rate at GS-1, GS-2, and GS-3 was found to be 26.7 ± 3.34%, 8.91 ± 0.10%, and 16.7 ± 0.34%, respectively, at 1000 µg/mL. GS-2 basil powder with the lowest toxicological risk was extracted with different solvents, viz., n-hexane, dichloromethane, ethanol, and water. The highest concentration of plant secondary metabolites including total phenolic acid, flavonoids, and tannin content was observed in ethanol extracts. Ethanol extracts also exhibited the highest antioxidant activity in DPPH, FRAP and H2O2 assays. LC-ESI-MS/MS analysis presented ethanol extracts of basil as a promising source of known health-promoting and therapeutic compounds such as rosmarinic acid, ellagic acid, catechin, liquiritigenin, and umbelliferone. The results suggest basil, a culinary ingredient, as a potential source of bioactive compounds which may offer an array of health promoting and therapeutic properties

    Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets

    Get PDF
    A commonly observed chicken meat issue is its lipid oxidation that leads to deterioration of its organoleptic and nutritional properties and its further-processed products. Basil (Ocimum basilicum L.) is one of the traditional culinary herbs exhibiting food preservation properties. The current study investigated the essential oil composition, antioxidant activity and in vitro cytotoxic capacity of the essential oil of basil indigenous to Pakistan. GC–MS analysis of the essential oil revealed the presence of 59 compounds that constituted 98.6% of the essential oil. O. basilicum essential oil (OB-EO) exhibited excellent antioxidant activity, i.e., IC50 5.92 ± 0.15 µg/mL as assayed by the DPPH assay, 23.4 ± 0.02 µmoL Fe/g by FRAP, and 14.6 ± 0.59% inhibition by H2O2. The brine shrimp lethality assay identified an average mortality of ~18% with OB-EO at 10–1000 µg/mL, while that of the same concentration range of the standard drug (etoposide) was 72%. OB-EO was found to be non-toxic to HeLa and PC-3 cell lines. TBARS contents were significantly decreased with increase of OB-EO in chicken nuggets. The lowest TBARS contents were recorded in nuggets supplemented with 0.3% OB-EO, whereas the highest overall acceptability score was marked to the treatments carrying 0.2% OB-EO. The results suggest OB-EO as a promising carrier of bioactive compounds with a broad range of food preservation properties, and which has a sensory acceptability threshold level for chicken nuggets falling between 0.2-0.3% supplementation. Future research must investigate the antibacterial impact of OB-EO on meat products preserved with natural rather than synthetic preservatives

    Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts

    Get PDF
    : Heterocyclic aromatic amines (HAAs) are potent carcinogenic compounds induced by the Maillard reaction in well-done cooked meats. Free amino acids, protein, creatinine, reducing sugars and nucleosides are major precursors involved in the production of polar and non-polar HAAs. The variety and yield of HAAs are linked with various factors such as meat type, heating time and temperature, cooking method and equipment, fresh meat storage time, raw material and additives, precursor's presence, water activity, and pH level. For the isolation and identification of HAAs, advanced chromatography and spectroscopy techniques have been employed. These potent mutagens are the etiology of several types of human cancers at the ng/g level and are 100- to 2000-fold stronger than that of aflatoxins and benzopyrene, respectively. This review summarizes previous studies on the formation and types of potent mutagenic and/or carcinogenic HAAs in cooked meats. Furthermore, occurrence, risk assessment, and factors affecting HAA formation are discussed in detail. Additionally, sample extraction procedure and quantification techniques to determine these compounds are analyzed and described. Finally, an overview is presented on the promising strategy to mitigate the risk of HAAs by natural compounds and the effect of plant extracts containing antioxidants to reduce or inhibit the formation of these carcinogenic substances in cooked meats

    Toxicity, Antioxidant Activity, and Phytochemicals of Basil (Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan

    No full text
    Basil (Ocimum basilicum L.) is one of the most common aromatic herbs, a rich source of bioactive compounds, and is used extensively to add aroma and flavor to food. The leaves, both in fresh and dried form, are used as a culinary ingredient in different cultures. O. basilicum is also famous for its therapeutic potential and preservation effects. The present study investigated the cytotoxicity of basil at three different growth stages (GS), i.e., GS-1 (58 days of growth), GS-2 (69 days of growth), and GS-3 (93 days of growth) using the brine shrimp lethality assay. The results revealed that cytotoxicity was influenced by GS and the concentration of extracts. Aqueous extracts of basil at a concentration of 10 to 1000 µg/mL did not show notable toxicity. The lowest mortality rate, i.e., 8.9%, was recorded for GS-2 at the highest tested dose of basil extracts. The mortality rate at GS-1, GS-2, and GS-3 was found to be 26.7 ± 3.34%, 8.91 ± 0.10%, and 16.7 ± 0.34%, respectively, at 1000 µg/mL. GS-2 basil powder with the lowest toxicological risk was extracted with different solvents, viz., n-hexane, dichloromethane, ethanol, and water. The highest concentration of plant secondary metabolites including total phenolic acid, flavonoids, and tannin content was observed in ethanol extracts. Ethanol extracts also exhibited the highest antioxidant activity in DPPH, FRAP and H2O2 assays. LC-ESI-MS/MS analysis presented ethanol extracts of basil as a promising source of known health-promoting and therapeutic compounds such as rosmarinic acid, ellagic acid, catechin, liquiritigenin, and umbelliferone. The results suggest basil, a culinary ingredient, as a potential source of bioactive compounds which may offer an array of health promoting and therapeutic properties

    Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets

    No full text
    A commonly observed chicken meat issue is its lipid oxidation that leads to deterioration of its organoleptic and nutritional properties and its further-processed products. Basil (Ocimum basilicum L.) is one of the traditional culinary herbs exhibiting food preservation properties. The current study investigated the essential oil composition, antioxidant activity and in vitro cytotoxic capacity of the essential oil of basil indigenous to Pakistan. GC–MS analysis of the essential oil revealed the presence of 59 compounds that constituted 98.6% of the essential oil. O. basilicum essential oil (OB-EO) exhibited excellent antioxidant activity, i.e., IC50 5.92 ± 0.15 µg/mL as assayed by the DPPH assay, 23.4 ± 0.02 µmoL Fe/g by FRAP, and 14.6 ± 0.59% inhibition by H2O2. The brine shrimp lethality assay identified an average mortality of ~18% with OB-EO at 10–1000 µg/mL, while that of the same concentration range of the standard drug (etoposide) was 72%. OB-EO was found to be non-toxic to HeLa and PC-3 cell lines. TBARS contents were significantly decreased with increase of OB-EO in chicken nuggets. The lowest TBARS contents were recorded in nuggets supplemented with 0.3% OB-EO, whereas the highest overall acceptability score was marked to the treatments carrying 0.2% OB-EO. The results suggest OB-EO as a promising carrier of bioactive compounds with a broad range of food preservation properties, and which has a sensory acceptability threshold level for chicken nuggets falling between 0.2-0.3% supplementation. Future research must investigate the antibacterial impact of OB-EO on meat products preserved with natural rather than synthetic preservatives

    Evaluation of antioxidant and hepatoprotective effects of Khamira Gaozaban Ambri Jadwar Ood Saleeb Wala (KGA)

    No full text
    Despite widespread use of Khamira Gaozaban Ambri Jadwar Ood Saleeb Wala (KGA) in the traditional medicine, there was a lack of scientific evidence on its efficacy and safety. The present investigation was designed to evaluate its ex vivo antioxidant and in vivo hepatoprotective properties against carbon tetrachloride toxicity in albino rats. At first phytochemicals analysis of test preparation was conducted to estimate its total phenolic and flavonoid contents. Then their antioxidant activity was determined by various tests and compared it with standards ascorbic acid and rutin. Afterwards, hepatoprotective activity was studied against carbon tetrachloride-induced liver damage by determining SGOT, SGPT, ALP, total cholesterol, bilirubin and total proteins contents in the serum of rats before and after treatment. This suggests that the hepatoprotective activity of formulation is possibly attributed to its free radical scavenging properties

    Carboxylated Graphene Oxide (c-GO) Embedded ThermoPlastic Polyurethane (TPU) Mixed Matrix Membrane with Improved Physicochemical Characteristics

    No full text
    Water is an important component of our life. However, the unavailability of fresh water and its contamination are emerging problems. The textile industries are the major suppliers of contamination of water, producing high concentrations of heavy metals and hazardous dyes posing serious health hazards. Several technologies for water purification are available in the market. Among them, the membrane technology is a highly advantageous and facile strategy to remediate wastewater. Herein, the distinguished combination of pore-forming agents, solvent, and nanoparticles has been used to achieve improved functioning of the polymeric composite membranes. To do so, graphene oxide (GO) was fabricated via Hummer’s technique and GO functionalization using chloroacetic acid (c-GO) was performed. Thermoplastic polyurathane (TPU) membranes having different concentrations c-GO were made using the phase inversion technique. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) was used to examine surface morphology, chemical functionalities on membranes surfaces, and crystallinity of membranes, respectively. The temperature-dependent behavior of c-GO composite membranes has been analyzed using DSC technique. The water contact angle measurements were performed for the estimation of hydrophilicity of the c-GO based TPU membrane. The improved water permeability of the composite membrane was observed with increasing the c-GO concentration in polymeric membranes. c-GO was observed as a potential candidate that enhanced membrane physicochemical properties. The proposed membranes can behave as efficient candidates in multiple domains of environmental remediation. Furthermore, the improved dye rejection characteristics of proposed composite membranes suggest that the membranes can be best suited for wastewater treatment as well

    Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.)

    No full text
    Pumpkin is a well-known multifunctional ingredient in the diet, full of nutrients, and has opened new vistas for scientists during the past years. The fruit of pumpkin including the flesh, seed, and peel are a rich source of primary and secondary metabolites, including proteins, carbohydrates, monounsaturated fatty acids, polyunsaturated fatty acids, carotenoids, tocopherols, tryptophan, delta-7-sterols, and many other phytochemicals. This climber is traditionally used in many countries, such as Austria, Hungary, Mexico, Slovenia, China, Spain, and several Asian and African countries as a functional food and provides health promising properties. Other benefits of pumpkin, such as improving spermatogenesis, wound healing, antimicrobial, anti-inflammatory, antioxidative, anti-ulcerative properties, and treatment of benign prostatic hyperplasia have also been confirmed by researchers. For better drug delivery, nanoemulsions and niosomes made from pumpkin seeds have also been reported as a health promising tool, but further research is still required in this field. This review mainly focuses on compiling and summarizing the most relevant literature to highlight the nutritional value, phytochemical potential, and therapeutic benefits of pumpkin

    Nutritional value, phytochemical potential, and therapeutic benefits of pumpkin (Cucurbita sp.)

    No full text
    Pumpkin is a well-known multifunctional ingredient in the diet, full of nutrients, and has opened new vistas for scientists during the past years. The fruit of pumpkin including the flesh, seed, and peel are a rich source of primary and secondary metabolites, including proteins, carbohydrates, monounsaturated fatty acids, polyunsaturated fatty acids, carotenoids, tocopherols, tryptophan, delta-7-sterols, and many other phytochemicals. This climber is traditionally used in many countries, such as Austria, Hungary, Mexico, Slovenia, China, Spain, and several Asian and African countries as a functional food and provides health promising properties. Other benefits of pumpkin, such as improving spermatogenesis, wound healing, antimicrobial, anti-inflammatory, antioxidative, anti-ulcerative properties, and treatment of benign prostatic hyperplasia have also been confirmed by researchers. For better drug delivery, nanoemulsions and niosomes made from pumpkin seeds have also been reported as a health promising tool, but further research is still required in this field. This review mainly focuses on compiling and summarizing the most relevant literature to highlight the nutritional value, phytochemical potential, and therapeutic benefits of pumpkin
    corecore