42 research outputs found
Apparent downwind depletion of volcanic SO 2 flux-lessons from Masaya Volcano, Nicaragua
Abstract A series of 707 measurements at Masaya in 2005, 2006, and 2007 reveals that SO 2 emissions 15km downwind of the active vent appear to be~33% to~50% less than those measured only 5km from the vent. Measurements from this and previous studies indicate that dry deposition of sulfur from the plume and conversion of SO 2 to sulfate aerosols within the plume each may amount to a maximum of 10% loss, and are not sufficient to account for the larger apparent loss measured. However, the SO 2 measurement site 15km downwind is located on a ridge over which local trade winds, and the entrained plume, accelerate. Greater wind speeds cause localized dilution of the plume along the axis of propagation. The lower concentrations of SO 2 measured on the ridge therefore lead to calculations of lower fluxes when calculated at the same plume speed as measurements from only 5km downwind, and is responsible for the apparent loss of SO 2 . Due to the importance of SO 2 emission rates with respect to hazard mitigation, petrologic studies, and sulfur budget calculations, measured fluxes of SO 2 must be as accurate as possible. Future campaigns to measure SO 2 flux at Masaya and similar volcanoes will require individual plume speed measurements to be taken at each flux measurement site to compensate for dilution and subsequent calculation of lower fluxes. This study highlights the importance of a comprehensive understanding of a volcano's interaction with its surroundings, especially for low, boundary layer volcanoes
Spatial and Temporal Variations in SO 2 and PM 2.5 Levels Around Kīlauea Volcano, Hawai'i During 2007–2018
Among the hazards posed by volcanoes are the emissions of gases and particles that can affect air quality and damage agriculture and infrastructure. A recent intense episode of volcanic degassing associated with severe impacts on air quality accompanied the 2018 lower East Rift Zone (LERZ) eruption of Kīlauea volcano, Hawai'i. This resulted in a major increase in gas emission rates with respect to usual emission values for this volcano, along with a shift in the source of the dominant plume to a populated area on the lower flank of the volcano. This led to reduced air quality in downwind communities. We analyse open-access data from the permanent air quality monitoring networks operated by the Hawai'i Department of Health (HDOH) and National Park Service (NPS), and report on measurements of atmospheric sulfur dioxide (SO2) between 2007 and 2018 and PM2.5 (aerosol particulate matter with diameter <2.5 μm) between 2010 and 2018. Additional air quality data were collected through a community-operated network of low-cost PM2.5 sensors during the 2018 LERZ eruption. From 2007 to 2018 the two most significant escalations in Kīlauea's volcanic emissions were: the summit eruption that began in 2008 (Kīlauea emissions averaged 5–6 kt/day SO2 from 2008 until summit activity decreased in May 2018) and the LERZ eruption in 2018 when SO2 emission rates reached a monthly average of 200 kt/day during June. In this paper we focus on characterizing the airborne pollutants arising from the 2018 LERZ eruption and the spatial distribution and severity of volcanic air pollution events across the Island of Hawai'i. The LERZ eruption caused the most frequent and severe exceedances of the Environmental Protection Agency (EPA) PM2.5 air quality threshold (35 μg/m3 as a daily average) in Hawai'i in the period 2010–2018. In Kona, for example, the maximum 24-h-mean mass concentration of PM2.5 was recorded as 59 μg/m3 on the twenty-ninth of May 2018, which was one of eight recorded exceedances of the EPA air quality threshold during the 2018 LERZ eruption, where there had been no exceedances in the previous 8 years as measured by the HDOH and NPS networks. SO2 air pollution during the LERZ eruption was most severe in communities in the south and west of the island, as measured by selected HDOH and NPS stations in this study, with a maximum 24-h-mean mass concentration of 728 μg/m3 recorded in Ocean View (100 km west of the LERZ emission source) in May 2018. Data from the low-cost sensor network correlated well with data from the HDOH PM2.5 instruments, confirming that these low-cost sensors provide a robust means to augment reference-grade instrument networks
F.A.R.O.G. FORUM, Vol. 2 No. 6
https://digitalcommons.library.umaine.edu/francoamericain_forum/1006/thumbnail.jp
Volatile metal emissions from volcanic degassing and lava–seawater interactions at Kīlauea Volcano, Hawai’i
Funder: EPSRC-CASE studentshipFunder: NERC studentshipFunder: Leverhulme Trust; doi: https://doi.org/10.13039/501100000275Funder: NERC-CASE studentshipFunder: Rolex InstituteAbstract: Volcanoes represent one of the largest natural sources of metals to the Earth’s surface. Emissions of these metals can have important impacts on the biosphere as pollutants or nutrients. Here we use ground- and drone-based direct measurements to compare the gas and particulate chemistry of the magmatic and lava–seawater interaction (laze) plumes from the 2018 eruption of Kīlauea, Hawai’i. We find that the magmatic plume contains abundant volatile metals and metalloids whereas the laze plume is further enriched in copper and seawater components, like chlorine, with volatile metals also elevated above seawater concentrations. Speciation modelling of magmatic gas mixtures highlights the importance of the S2− ligand in highly volatile metal/metalloid degassing at the magmatic vent. In contrast, volatile metal enrichments in the laze plume can be explained by affinity for chloride complexation during late-stage degassing of distal lavas, which is potentially facilitated by the HCl gas formed as seawater boils
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020
[EN] Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3,4,5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.S
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Resumen de las principales técnicas de percepción remota usadas en volcanes para monitorear las emisiones de gas en tierra
Volcano monitoring seeks to better understand volcanic systems, in order to be able to predict their activity. The monitoring techniques include seismic, deformation, gas, hydrologic, and visual monitoring, among others. Gas monitoring is important, among other reasons, because it provides information about the dynamics and evolution of magmatic and hydrothermal systems. Measurements can be conducted directly or by remote sensing methods (ground-based or satellite-based). Here we focus on the main ground-based remote sensing methods, which are currently used at volcanoes. These include the correlation spectrometer (COSPEC), the DOAS, the ultraviolet camera, and the Fourier Transform Infrared spectrometer (FTIR). Each technique has its advantages and disadvantages, and to understand them, we describe here the general aspects of each one, including methods to conduct the measurements, the sources of error, and some examples of case studies.El monitoreo volcánico busca entender mejor los sistemas volcánicos, para poder realizar predicciones de su actividad. Las técnicas de monitoreo incluyen el sísmico, de deformación, de gases, hidrológico, y visual, entre otros. El monitoreo de gases es importante, entre otras razones, porque nos provee información sobre la dinámica y evolución de los sistemas magmáticos e hidrotermales. Las medidas se pueden hacer de forma directa o por métodos de percepción remota (en superficie o satelital). Aquí nos enfocamos en los principales métodos de percepción remota en superficie, que se usan actualmente en volcanes. Estos incluyen el espectrómetro de correlación (COSPEC), el DOAS, la cámara ultravioleta y el espectrómetro infrarrojo de transformada de Fourier (FTIR). Cada una de estas técnicas tiene ventajas y desventajas, y para entenderlas, aquí se describen los aspectos generales de cada una, incluyendo métodos para conducir las mediciones, las fuentes de error y algunos ejemplos de estudios hechos
Apparent downwind depletion of volcanic SO \u3c inf\u3e 2 flux - Lessons from Masaya Volcano, Nicaragua
A series of 707 measurements at Masaya in 2005, 2006, and 2007 reveals that SO2 emissions 15km downwind of the active vent appear to be ∼33% to ∼50% less than those measured only 5km from the vent. Measurements from this and previous studies indicate that dry deposition of sulfur from the plume and conversion of SO2 to sulfate aerosols within the plume each may amount to a maximum of 10% loss, and are not sufficient to account for the larger apparent loss measured. However, the SO2 measurement site 15 km downwind is located on a ridge over which local trade winds, and the entrained plume, accelerate. Greater wind speeds cause localized dilution of the plume along the axis of propagation. The lower concentrations of SO2 measured on the ridge therefore lead to calculations of lower fluxes when calculated at the same plume speed as measurements from only 5 km downwind, and is responsible for the apparent loss of SO2. Due to the importance of SO2 emission rates with respect to hazard mitigation, petrologic studies, and sulfur budget calculations, measured fluxes of SO2 must be as accurate as possible. Future campaigns to measure SO2 flux at Masaya and similar volcanoes will require individual plume speed measurements to be taken at each flux measurement site to compensate for dilution and subsequent calculation of lower fluxes. This study highlights the importance of a comprehensive understanding of a volcano\u27s interaction with its surroundings, especially for low, boundary layer volcanoes. © Springer-Verlag 2008
Variability in eruption style and associated very long period events at Fuego volcano, Guatemala
Repeated short-term deployments of seismic, infrasound, video, and gas-emission instruments at Fuego volcano, Guatemala have revealed three types of very long period (VLP) events associated with conduit sealing, pressure accumulation, and release. In 2008, ash-rich explosions issued from a vent on the western flank and produced one type of VLP (Type 1). Impulsive, bomb-rich explosions from the summit vent in 2009 produced a shorter period VLP (Type 2), but also generated ash release. Type 3 VLP events occurred during ash-free exhalations from the summit in 2008 and had waveform shapes similar to Type 2 events. Weak infrasound records for Type 1 explosions compared to Type 2 suggest lower pressures and higher magma porosity for Type 1. Type 3 events correlate with spikes in SO2 emission rate and are driven by partial sealing and rapid release of ash-free gas at the summit vent. Variations in the VLP period may provide a new tool for monitoring conditions within the conduit
Linking volcanic tremor, degassing, and eruption dynamics via SO \u3c inf\u3e 2 imaging
Recently developed UV cameras offer improvement in remote sensing of volcanic SO2, with temporal resolutions of ∼1 Hz and synoptic plume views. Integrated UV camera and seismic measurements recorded in January 2009 at Fuego volcano, Guatemala, provide new insight into the system\u27s shallow conduit processes. High temporal resolution SO2 data reveal patterns of SO2 emission rate relative to explosions and seismic tremor that indicate tremor and degassing share a common source process. Progressive decreases in emission rate appear to represent inhibition of gas loss from magma as a result of rheological stiffening in the upper conduit. Measurements of emission rate from two closely-spaced vents, made possible by the high spatial resolution of the camera (1024 × 1024 pixels), help constrain this model. This inter-disciplinary approach illuminates eruptive processes at Fuego and holds promise for gaining similar understanding at other volcanic systems. Copyright © 2011 by the American Geophysical Union