34 research outputs found

    Path Consistency Learning in Tsallis Entropy Regularized MDPs

    Full text link
    We study the sparse entropy-regularized reinforcement learning (ERL) problem in which the entropy term is a special form of the Tsallis entropy. The optimal policy of this formulation is sparse, i.e.,~at each state, it has non-zero probability for only a small number of actions. This addresses the main drawback of the standard Shannon entropy-regularized RL (soft ERL) formulation, in which the optimal policy is softmax, and thus, may assign a non-negligible probability mass to non-optimal actions. This problem is aggravated as the number of actions is increased. In this paper, we follow the work of Nachum et al. (2017) in the soft ERL setting, and propose a class of novel path consistency learning (PCL) algorithms, called {\em sparse PCL}, for the sparse ERL problem that can work with both on-policy and off-policy data. We first derive a {\em sparse consistency} equation that specifies a relationship between the optimal value function and policy of the sparse ERL along any system trajectory. Crucially, a weak form of the converse is also true, and we quantify the sub-optimality of a policy which satisfies sparse consistency, and show that as we increase the number of actions, this sub-optimality is better than that of the soft ERL optimal policy. We then use this result to derive the sparse PCL algorithms. We empirically compare sparse PCL with its soft counterpart, and show its advantage, especially in problems with a large number of actions

    The Laplacian in RL: Learning Representations with Efficient Approximations

    Full text link
    The smallest eigenvectors of the graph Laplacian are well-known to provide a succinct representation of the geometry of a weighted graph. In reinforcement learning (RL), where the weighted graph may be interpreted as the state transition process induced by a behavior policy acting on the environment, approximating the eigenvectors of the Laplacian provides a promising approach to state representation learning. However, existing methods for performing this approximation are ill-suited in general RL settings for two main reasons: First, they are computationally expensive, often requiring operations on large matrices. Second, these methods lack adequate justification beyond simple, tabular, finite-state settings. In this paper, we present a fully general and scalable method for approximating the eigenvectors of the Laplacian in a model-free RL context. We systematically evaluate our approach and empirically show that it generalizes beyond the tabular, finite-state setting. Even in tabular, finite-state settings, its ability to approximate the eigenvectors outperforms previous proposals. Finally, we show the potential benefits of using a Laplacian representation learned using our method in goal-achieving RL tasks, providing evidence that our technique can be used to significantly improve the performance of an RL agent

    Identifying and Correcting Label Bias in Machine Learning

    Full text link
    Datasets often contain biases which unfairly disadvantage certain groups, and classifiers trained on such datasets can inherit these biases. In this paper, we provide a mathematical formulation of how this bias can arise. We do so by assuming the existence of underlying, unknown, and unbiased labels which are overwritten by an agent who intends to provide accurate labels but may have biases against certain groups. Despite the fact that we only observe the biased labels, we are able to show that the bias may nevertheless be corrected by re-weighting the data points without changing the labels. We show, with theoretical guarantees, that training on the re-weighted dataset corresponds to training on the unobserved but unbiased labels, thus leading to an unbiased machine learning classifier. Our procedure is fast and robust and can be used with virtually any learning algorithm. We evaluate on a number of standard machine learning fairness datasets and a variety of fairness notions, finding that our method outperforms standard approaches in achieving fair classification

    Reinforcement Learning via Fenchel-Rockafellar Duality

    Full text link
    We review basic concepts of convex duality, focusing on the very general and supremely useful Fenchel-Rockafellar duality. We summarize how this duality may be applied to a variety of reinforcement learning (RL) settings, including policy evaluation or optimization, online or offline learning, and discounted or undiscounted rewards. The derivations yield a number of intriguing results, including the ability to perform policy evaluation and on-policy policy gradient with behavior-agnostic offline data and methods to learn a policy via max-likelihood optimization. Although many of these results have appeared previously in various forms, we provide a unified treatment and perspective on these results, which we hope will enable researchers to better use and apply the tools of convex duality to make further progress in RL

    Statistical Bootstrapping for Uncertainty Estimation in Off-Policy Evaluation

    Full text link
    In reinforcement learning, it is typical to use the empirically observed transitions and rewards to estimate the value of a policy via either model-based or Q-fitting approaches. Although straightforward, these techniques in general yield biased estimates of the true value of the policy. In this work, we investigate the potential for statistical bootstrapping to be used as a way to take these biased estimates and produce calibrated confidence intervals for the true value of the policy. We identify conditions - specifically, sufficient data size and sufficient coverage - under which statistical bootstrapping in this setting is guaranteed to yield correct confidence intervals. In practical situations, these conditions often do not hold, and so we discuss and propose mechanisms that can be employed to mitigate their effects. We evaluate our proposed method and show that it can yield accurate confidence intervals in a variety of conditions, including challenging continuous control environments and small data regimes

    Trust-PCL: An Off-Policy Trust Region Method for Continuous Control

    Full text link
    Trust region methods, such as TRPO, are often used to stabilize policy optimization algorithms in reinforcement learning (RL). While current trust region strategies are effective for continuous control, they typically require a prohibitively large amount of on-policy interaction with the environment. To address this problem, we propose an off-policy trust region method, Trust-PCL. The algorithm is the result of observing that the optimal policy and state values of a maximum reward objective with a relative-entropy regularizer satisfy a set of multi-step pathwise consistencies along any path. Thus, Trust-PCL is able to maintain optimization stability while exploiting off-policy data to improve sample efficiency. When evaluated on a number of continuous control tasks, Trust-PCL improves the solution quality and sample efficiency of TRPO.Comment: ICLR 201

    Bridging the Gap Between Value and Policy Based Reinforcement Learning

    Full text link
    We establish a new connection between value and policy based reinforcement learning (RL) based on a relationship between softmax temporal value consistency and policy optimality under entropy regularization. Specifically, we show that softmax consistent action values correspond to optimal entropy regularized policy probabilities along any action sequence, regardless of provenance. From this observation, we develop a new RL algorithm, Path Consistency Learning (PCL), that minimizes a notion of soft consistency error along multi-step action sequences extracted from both on- and off-policy traces. We examine the behavior of PCL in different scenarios and show that PCL can be interpreted as generalizing both actor-critic and Q-learning algorithms. We subsequently deepen the relationship by showing how a single model can be used to represent both a policy and the corresponding softmax state values, eliminating the need for a separate critic. The experimental evaluation demonstrates that PCL significantly outperforms strong actor-critic and Q-learning baselines across several benchmarks.Comment: NIPS 201

    Learning to Remember Rare Events

    Full text link
    Despite recent advances, memory-augmented deep neural networks are still limited when it comes to life-long and one-shot learning, especially in remembering rare events. We present a large-scale life-long memory module for use in deep learning. The module exploits fast nearest-neighbor algorithms for efficiency and thus scales to large memory sizes. Except for the nearest-neighbor query, the module is fully differentiable and trained end-to-end with no extra supervision. It operates in a life-long manner, i.e., without the need to reset it during training. Our memory module can be easily added to any part of a supervised neural network. To show its versatility we add it to a number of networks, from simple convolutional ones tested on image classification to deep sequence-to-sequence and recurrent-convolutional models. In all cases, the enhanced network gains the ability to remember and do life-long one-shot learning. Our module remembers training examples shown many thousands of steps in the past and it can successfully generalize from them. We set new state-of-the-art for one-shot learning on the Omniglot dataset and demonstrate, for the first time, life-long one-shot learning in recurrent neural networks on a large-scale machine translation task.Comment: Conference paper accepted for ICLR'1

    Group-based Fair Learning Leads to Counter-intuitive Predictions

    Full text link
    A number of machine learning (ML) methods have been proposed recently to maximize model predictive accuracy while enforcing notions of group parity or fairness across sub-populations. We propose a desirable property for these procedures, slack-consistency: For any individual, the predictions of the model should be monotonic with respect to allowed slack (i.e., maximum allowed group-parity violation). Such monotonicity can be useful for individuals to understand the impact of enforcing fairness on their predictions. Surprisingly, we find that standard ML methods for enforcing fairness violate this basic property. Moreover, this undesirable behavior arises in situations agnostic to the complexity of the underlying model or approximate optimizations, suggesting that the simple act of incorporating a constraint can lead to drastically unintended behavior in ML. We present a simple theoretical method for enforcing slack-consistency, while encouraging further discussions on the unintended behaviors potentially induced when enforcing group-based parity

    Near-Optimal Representation Learning for Hierarchical Reinforcement Learning

    Full text link
    We study the problem of representation learning in goal-conditioned hierarchical reinforcement learning. In such hierarchical structures, a higher-level controller solves tasks by iteratively communicating goals which a lower-level policy is trained to reach. Accordingly, the choice of representation -- the mapping of observation space to goal space -- is crucial. To study this problem, we develop a notion of sub-optimality of a representation, defined in terms of expected reward of the optimal hierarchical policy using this representation. We derive expressions which bound the sub-optimality and show how these expressions can be translated to representation learning objectives which may be optimized in practice. Results on a number of difficult continuous-control tasks show that our approach to representation learning yields qualitatively better representations as well as quantitatively better hierarchical policies, compared to existing methods (see videos at https://sites.google.com/view/representation-hrl).Comment: ICLR 2019 Conference Pape
    corecore