76 research outputs found

    A Systematic Evidence Map Protocol of Time Activity Data in Exposure Science

    Get PDF
    Time Activity Data (TAD) describe the frequency, duration, and timing of human activities. Given that activity dictates the rate of contact a person has with an environmental hazard, activity data can be used to derive rigorous estimates of exposure. TAD have been used to support exposure estimation in a variety of contexts, though there has been no systematic characterization of the use of this approach in exposure science and environmental epidemiology. Here, we propose a protocol in pursuit of characterizing the body of peer-reviewed literature using TAD in the estimation of exposure to chemical, biological, and physical hazards in the form of an evidence map. This protocol details the proposed search strategy and plan for data extraction including study population demographics, methods of TAD collection, and study participant activities. Reflexive journaling, codebook development, and descriptive statistics will be conducted to analyze the data collected as part of this evidence map

    Arsenic: A Roadblock to Potential Animal Waste Management Solutions

    Get PDF
    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management

    A comparative study of allowable pesticide residue levels on produce in the United States

    Get PDF
    Background: The U.S. imports a substantial and increasing portion of its fruits and vegetables. The U.S. Food and Drug Administration currently inspects less than one percent of import shipments. While countries exporting to the U.S. are expected to comply with U.S. tolerances, including allowable pesticide residue levels, there is a low rate of import inspections and few other incentives for compliance. Methods: This analysis estimates the quantity of excess pesticide residue that could enter the U.S. if exporters followed originating country requirements but not U.S. pesticide tolerances, for the top 20 imported produce items based on quantities imported and U.S. consumption levels. Pesticide health effects data are also shown. Results: The model estimates that for the identified items, 120 439 kg of pesticides in excess of U.S. tolerances could potentially be imported to the U.S., in cases where U.S. regulations are more protective than those of originating countries. This figure is in addition to residues allowed on domestic produce. In the modeling, the top produce item, market, and pesticide of concern were oranges, Chile, and Zeta-Cypermethrin. Pesticides in this review are associated with health effects on 13 body systems, and some are associated with carcinogenic effects. Conclusions: There is a critical information gap regarding pesticide residues on produce imported to the U.S. Without a more thorough sampling program, it is not possible accurately to characterize risks introduced by produce importation. The scenario presented herein relies on assumptions, and should be considered illustrative. The analysis highlights the need for additional investigation and resources for monitoring, enforcement, and other interventions, to improve import food safety and reduce pesticide exposures in originating countries

    Multidrug Resistance of Escherichia coli From Outpatient Uncomplicated Urinary Tract Infections in a Large United States Integrated Healthcare Organization

    Get PDF
    Background Urinary tract infections (UTIs) cause significant disease and economic burden. Uncomplicated UTIs (uUTIs) occur in otherwise healthy individuals without underlying structural abnormalities, with uropathogenic Escherichia coli (UPEC) accounting for 80% of cases. With recent transitions in healthcare toward virtual visits, data on multidrug resistance (MDR) (resistant to ≥3 antibiotic classes) by care setting are needed to inform empiric treatment decision making. Methods We evaluated UPEC resistance over time by care setting (in-person vs virtual), in adults who received outpatient care for uUTI at Kaiser Permanente Southern California between January 2016 and December 2021. Results We included 174 185 individuals who had ≥1 UPEC uUTI (233 974 isolates) (92% female, 46% Hispanic, mean age 52 years [standard deviation 20]). Overall, prevalence of UPEC MDR decreased during the study period (13% to 12%) both in virtual and in-person settings (P for trendConclusions We observed a slight decrease in both class-specific antimicrobial resistance and MDR of UPEC overall, most commonly involving penicillins and TMP-SMX. Resistance patterns were consistent over time and similar in both in-person and virtual settings. Virtual healthcare may expand access to UTI care

    Persistence of livestock-associated antibiotic-resistant Staphylococcus aureus among industrial hog operation workers in North Carolina over 14 days

    Get PDF
    ObjectivesThis study aimed to evaluate the persistence of nasal carriage of Staphylococcus aureus, methicillin-resistant S. aureus and multidrug-resistant S. aureus over 14 days of follow-up among industrial hog operation workers in North Carolina.MethodsWorkers anticipating at least 24 h away from work were enrolled June–August 2012. Participants self-collected a nasal swab and completed a study journal on the evening of day 1, and each morning and evening on days 2–7 and 14 of the study. S. aureus isolated from nasal swabs were assessed for antibiotic susceptibility, spa type and absence of the scn gene. Livestock association was defined by absence of scn.ResultsTwenty-two workers provided 327 samples. S. aureus carriage end points did not change with time away from work (mean 49 h; range >0–96 h). Ten workers were persistent and six were intermittent carriers of livestock-associated S. aureus. Six workers were persistent and three intermittent carriers of livestock-associated multidrug-resistant S. aureus. One worker persistently carried livestock-associated methicillin-resistant S. aureus. Six workers were non-carriers of livestock-associated S. aureus. Eighty-two per cent of livestock-associated S. aureus demonstrated resistance to tetracycline. A majority of livestock-associated S. aureus isolates (n=169) were CC398 (68%) while 31% were CC9. No CC398 and one CC9 isolate was detected among scn-positive isolates.ConclusionsNasal carriage of livestock-associated S. aureus, multidrug-resistant S. aureus and methicillin-resistant S. aureus can persist among industrial hog operation workers over a 14-day period, which included up to 96 h away from work

    Urban community gardeners' knowledge and perceptions of soil contaminant risks

    Get PDF
    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether

    Leveraging Epidemiology to Improve Risk Assessment

    Full text link
    corecore