459 research outputs found
Electron-Electron Interaction in Linear Arrays of Small Tunnel Junctions
We have calculated the spatial distribution of the electrostatic potential
created by an unbalanced charge in one of the conducting electrodes of a
long, uniform, linear array of small tunnel junctions. The distribution
describes, in particular, the shape of a topological single-electron soliton in
such an array. An analytical solution obtained for a circular cross section
model is compared with results of geometrical modeling of a more realistic
structure with square cross section. These solutions are very close to one
another, and can be reasonably approximated by a simple phenomenological
expression. In contrast to the previously accepted exponential approximation,
the new result describes the crossover between the linear change of the
potential near the center of the soliton to the unscreened Coulomb potential
far from the center, with an unexpected ``hump'' near the crossover point.Comment: 8 pages, RevTeX 3.0, 4 PostScript figures. To appear in Applied
Physics Letters, circa 12 Nov 199
Single-Electron Traps: A Quantitative Comparison of Theory and Experiment
We have carried out a coordinated experimental and theoretical study of
single-electron traps based on submicron aluminum islands and aluminum oxide
tunnel junctions. The results of geometrical modeling using a modified version
of MIT's FastCap were used as input data for the general-purpose
single-electron circuit simulator MOSES. The analysis indicates reasonable
quantitative agreement between theory and experiment for those trap
characteristics which are not affected by random offset charges. The observed
differences between theory and experiment (ranging from a few to fifty percent)
can be readily explained by the uncertainty in the exact geometry of the
experimental nanostructures.Comment: 17 pages, 21 figures, RevTex, eps
Shot Noise of Single-Electron Tunneling in 1D Arrays
We have used numerical modeling and a semi-analytical calculation method to
find the low frequency value S_{I}(0) of the spectral density of fluctuations
of current through 1D arrays of small tunnel junctions, using the ``orthodox
theory'' of single-electron tunneling. In all three array types studied, at low
temperature (kT << eV), increasing current induces a crossover from the
Schottky value S_{I}(0)=2e to the ``reduced Schottky value''
S_{I}(0)=2e/N (where N is the array length) at some crossover current I_{c}.
In uniform arrays over a ground plane, I_{c} is proportional to exp(-\lambda
N), where 1/\lambda is the single-electron soliton length. In arrays without a
ground plane, I_{c} decreases slowly with both N and \lambda. Finally, we have
calculated the statistics of I_{c} for ensembles of arrays with random
background charges. The standard deviation of I_{c} from the ensemble average
is quite large, typically between 0.5 and 0.7 of , while the
dependence of on N or \lambda is so weak that it is hidden within the
random fluctuations of the crossover current.Comment: RevTex. 21 pages of text, 10 postscript figure
Transport of charged particles by adjusting rf voltage amplitudes
We propose a planar architecture for scalable quantum information processing
(QIP) that includes X-junctions through which particles can move without
micromotion. This is achieved by adjusting radio frequency (rf) amplitudes to
move an rf null along the legs of the junction. We provide a proof-of-principle
by transporting dust particles in three dimensions via adjustable rf potentials
in a 3D trap. For the proposed planar architecture, we use regularization
techniques to obtain amplitude settings that guarantee smooth transport through
the X-junction.Comment: 16 pages, 10 figure
A trapped-ion local field probe
We introduce a measurement scheme that utilizes a single ion as a local field
probe. The ion is confined in a segmented Paul trap and shuttled around to
reach different probing sites. By the use of a single atom probe, it becomes
possible characterizing fields with spatial resolution of a few nm within an
extensive region of millimeters. We demonstrate the scheme by accurately
investigating the electric fields providing the confinement for the ion. For
this we present all theoretical and practical methods necessary to generate
these potentials. We find sub-percent agreement between measured and calculated
electric field values
Full capacitance-matrix effects in driven Josephson-junction arrays
We study the dynamic response to external currents of periodic arrays of
Josephson junctions, in a resistively capacitively shunted junction (RCSJ)
model, including full capacitance-matrix effects}. We define and study three
different models of the capacitance matrix : Model A
includes only mutual capacitances; Model B includes mutual and self
capacitances, leading to exponential screening of the electrostatic fields;
Model C includes a dense matrix that is constructed
approximately from superposition of an exact analytic solution for the
capacitance between two disks of finite radius and thickness. In the latter
case the electrostatic fields decay algebraically. For comparison, we have also
evaluated the full capacitance matrix using the MIT fastcap algorithm, good for
small lattices, as well as a corresponding continuum effective-medium analytic
evaluation of a finite voltage disk inside a zero-potential plane. In all cases
the effective decays algebraically with distance, with
different powers. We have then calculated current voltage characteristics for
DC+AC currents for all models. We find that there are novel giant capacitive
fractional steps in the I-V's for Models B and C, strongly dependent on the
amount of screening involved. We find that these fractional steps are quantized
in units inversely proportional to the lattice sizes and depend on the
properties of . We also show that the capacitive steps
are not related to vortex oscillations but to localized screened phase-locking
of a few rows in the lattice. The possible experimental relevance of these
results is also discussed.Comment: 12 pages 18 Postscript figures, REVTEX style. Paper to appear in July
1, Vol. 58, Phys. Rev. B 1998 All PS figures include
Association of pre-radiotherapy tumour burden and overall survival in newly diagnosed glioblastoma adjusted for MGMT promoter methylation status
PURPOSE: We retrospectively evaluated the association between postoperative pre-radiotherapy tumour burden and overall survival (OS) adjusted for the prognostic value of O-methylguanine DNA methyltransferase (MGMT) promoter methylation in patients with newly diagnosed glioblastoma treated with radio-/chemotherapy with temozolomide.
MATERIALS AND METHODS: Patients were included from the CENTRIC (EORTC 26071-22072) and CORE trials if postoperative magnetic resonance imaging scans were available within a timeframe of up to 4weeks before radiotherapy, including both pre- and post-contrast T1w images and at least one T2w sequence (T2w or T2w-FLAIR). Postoperative (residual) pre-radiotherapy contrast-enhanced tumour (CET) volumes and non-enhanced T2w abnormalities (NT2A) tissue volumes were obtained by three-dimensional segmentation. Cox proportional hazard models and Kaplan Meier estimates were used to assess the association of pre-radiotherapy CET/NT2A volume with OS adjusted for known prognostic factors (age, performance status, MGMT status).
RESULTS: 408 tumour (of which 270 MGMT methylated) segmentations were included. Median OS in patients with MGMT methylated tumours was 117 weeks versus 61weeks in MGMT unmethylated tumours (p < 0.001). When stratified for MGMT methylation status, higher CET volume (HR 1.020; 95% confidence interval CI [1.013-1.027]; p < 0.001) and older age (HR 1.664; 95% CI [1.214-2.281]; p = 0.002) were significantly associated with shorter OS while NT2A volume and performance status were not.
CONCLUSION: Pre-radiotherapy CET volume was strongly associated with OS in patients receiving radio-/chemotherapy for newly diagnosed glioblastoma stratified by MGMT promoter methylation status
Association of pre-radiotherapy tumour burden and overall survival in newly diagnosed glioblastoma adjusted for <i>MGMT </i>promoter methylation status
PURPOSE: We retrospectively evaluated the association between postoperative pre-radiotherapy tumour burden and overall survival (OS) adjusted for the prognostic value of O-methylguanine DNA methyltransferase (MGMT) promoter methylation in patients with newly diagnosed glioblastoma treated with radio-/chemotherapy with temozolomide.
MATERIALS AND METHODS: Patients were included from the CENTRIC (EORTC 26071-22072) and CORE trials if postoperative magnetic resonance imaging scans were available within a timeframe of up to 4weeks before radiotherapy, including both pre- and post-contrast T1w images and at least one T2w sequence (T2w or T2w-FLAIR). Postoperative (residual) pre-radiotherapy contrast-enhanced tumour (CET) volumes and non-enhanced T2w abnormalities (NT2A) tissue volumes were obtained by three-dimensional segmentation. Cox proportional hazard models and Kaplan Meier estimates were used to assess the association of pre-radiotherapy CET/NT2A volume with OS adjusted for known prognostic factors (age, performance status, MGMT status).
RESULTS: 408 tumour (of which 270 MGMT methylated) segmentations were included. Median OS in patients with MGMT methylated tumours was 117 weeks versus 61weeks in MGMT unmethylated tumours (p < 0.001). When stratified for MGMT methylation status, higher CET volume (HR 1.020; 95% confidence interval CI [1.013-1.027]; p < 0.001) and older age (HR 1.664; 95% CI [1.214-2.281]; p = 0.002) were significantly associated with shorter OS while NT2A volume and performance status were not.
CONCLUSION: Pre-radiotherapy CET volume was strongly associated with OS in patients receiving radio-/chemotherapy for newly diagnosed glioblastoma stratified by MGMT promoter methylation status
Modeling Single Electron Transfer in Si:P Double Quantum Dots
Solid-state systems such as P donors in Si have considerable potential for
realization of scalable quantum computation. Recent experimental work in this
area has focused on implanted Si:P double quantum dots (DQDs) that represent a
preliminary step towards the realization of single donor charge-based qubits.
This paper focuses on the techniques involved in analyzing the charge transfer
within such DQD devices and understanding the impact of fabrication parameters
on this process. We show that misalignment between the buried dots and surface
gates affects the charge transfer behavior and identify some of the challenges
posed by reducing the size of the metallic dot to the few donor regime.Comment: 11 pages, 7 figures, submitted to Nanotechnolog
- …