12 research outputs found

    Enzymatic Properties of Populus ι- and β-NAD-ME Recombinant Proteins

    Get PDF
    Abstract: Plant mitochondrial NAD-malic enzyme (NAD-ME), which is composed of ι- and β-subunits in many species, participates in many plant biosynthetic pathways and in plant respiratory metabolism. However, little is known about the properties of woody plant NAD-MEs. In this study, we analyzed four NAD-ME genes (PtNAD-ME1 through PtNAD-ME4) in the genome of Populus trichocarpa. PtNAD-ME1 and-2 encode putative ι-subunits, while PtNAD-ME3 and-4 encode putative β-subunits. The Populus NAD-MEs were expressed in Escherichia coli cells as GST-tagged fusion proteins. Each recombinant GST-PtNAD-ME protein was purified to near homogeneity by glutathione-Sepharose 4B affinity chromatography. Milligram quantities of each native protein were obtained from 1 L bacterial cultures after cleavage of the GST tag. Analysis of the enzymatic properties of these proteins in vitro indicated that ι-NAD-MEs are more active than β-NAD-MEs and that ι- and β-NAD-MEs presented different kinetic properties (Vmax, kcat and kcat/Km). The effect of different amounts of metabolites on the activities of Populus ι- and β-NAD-MEs was assessed in vitro. While none of the metabolites evaluated in our assays activated PopulusInt. J. Mol. Sci. 2013, 14 12995 NAD-ME, oxalacetate and citrate inhibited all ι- and β-NAD-MEs and glucose-6-P an

    Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of crop plants

    No full text
    The natural environment is being drastically affected by climate change. Under these severe environmental conditions, the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the morphological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging will facilitate the development of techniques and methods to improve tolerance in crops

    Impact of Titanium Oxide Nanoparticles on Growth, Pigment Content, Membrane Stability, DNA Damage, and Stress-Related Gene Expression in <i>Vicia faba</i> under Saline Conditions

    No full text
    This study investigates the effects of titanium dioxide nanoparticles (nTiO2) on Vicia faba under salinity stress. Plants were treated with either 10 or 20 ppm nTiO2 and subjected to two different concentrations of salinity (100 and 200 mM NaCl) as well as the combined effect of nanoparticles and salinity. Salinity induced a reduction in dry weight, increased electron leakage and MDA content, increased chromosomal aberrations and DNA damage, and reduced transcript levels of some stress- and growth-related genes. nTiO2 treatment increased dry weight in unstressed plants and mitigated the salinity-damaging effect in stressed plants. nTiO2 application improved cell division, decreased chromosomal aberrations, and reduced DNA damage in plants under saline conditions. The upregulation of antioxidant genes further supports the protective role of nTiO2 against oxidative stress. Particularly significant was the ability of nTiO2 to enhance the upregulation of heat shock protein (HSP) genes. These findings underscore the potential of nTiO2 to reduce the osmotic and toxic effects of salinity-induced stress in plants

    Zinc Oxide and Silicone Nanoparticles to Improve the Resistance Mechanism and Annual Productivity of Salt-Stressed Mango Trees

    No full text
    Limited findings have been reported on using nanomaterials to improve tree fruit growth, development, and productivity under various stress conditions. To assess the effect of nanoparticles (NPs) like nano-zinc oxide (nZnO) and nano-silicon (nSi) on mango tree growth, yield, and fruit quality under salinity conditions, a factorial experiment was conducted using twelve treatments; three replicates each. Foliar spray of nZnO (50, 100, and 150 mg/L), nSi (150 and 300 mg/L), their combinations, and distilled water as a control was applied at full bloom and one month after of salt-stressed &ldquo;Ewais&rdquo; mango trees. Trees positively responded to different levels of nZnO and nSi. Plant growth, nutrients uptake, and carbon assimilation have improved with all treatments, except the higher concentration of nSi. Plant response to stress conditions was represented by a high level of proline content with all treatments, but changes in the activity of the antioxidant enzymes were positively related to the lower and medium concentrations of NPs. Flower malformation has significantly decreased, and the annual fruit yield and physiochemical characteristics have improved with all treatments. It could be recommended that a combination of 100 mg/L nZnO and 150 mg/L nSi improves mango tree resistance, annual crop load, and fruit quality under salinity conditions

    Use of plant growth-promoting rhizobacteria isolates as a potential biofertiliser for wheat

    No full text
    Plant growth-promoting rhizobacteria (PGPR) isolated from the rhizosphere soil of eight field crops at different locations in Egypt were identified. Rhizobacteria strains were identified as Bacillus endophyticus AW1 5, B. filamentosus EM9, ET3, Micrococcus luteus KT2, FW9, FC13, SaW4, Enterobacter cloacae SK18, Pseudomonas azotoformans TPo10, Citrobacter braakii TC3. All isolates solubilised insoluble phosphate and produced IAA, while only six were able to produce siderophores in vitro. Vegetative growth and yield of wheat cv. ‘Sakha 94’ were enhanced after the application of single inoculation of each isolate compared to the control. Grain yield was increased by 20.7-96.5% over the control according to bacterial isolates. Available phosphorus (P) and counts of total bacteria in soil were observed to be significantly increased in treatments than in control. After the wheat harvest, soil pH was observed to be decreased, and a highly significant negative correlation was observed between soil pH and the levels of available phosphorus. Significant increases in grain and straw yields, as well as uptake of nitrogen (N) and P by plants, were observed due to inoculation with PGPR isolates. Levels of photosynthetic pigments, free amino acids, free phenolics, and reducing sugars in flag leaf and spikes were significantly enhanced by the application of all PGPR isolates compared to the control. Thus this study identifies the PGPR isolates for the improvement of the growth, yield, and quality of wheat. The study may be also useful for field evaluation under different soils and environmental conditions before generalising PGPR isolates as biofertilisers

    Draft Genome Sequence of <em>Priestia</em> sp. Strain TSO9, a Plant Growth-Promoting Bacterium Associated with Wheat <em>(Triticum turgidum</em> subsp. <em>durum)</em> in the Yaqui Valley, Mexico

    No full text
    Strain TSO9 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum) located in the Yaqui, Valley, Mexico. Here, the genome of this strain was sequenced, obtaining a total of 5,248,515 bp; 38.0% G + C content; 1,186,514 bp N50; and 2 L50. Based on the 16S rRNA gene sequencing, strain TSO9 was affiliated with the genus Priestia. The genome annotation of Priestia sp. TSO9 contains a total of 147 RNAs, 128 tRNAs, 1 tmRNA, and 5512 coding DNA sequences (CDS) distributed into 332 subsystems, where CDS associated with agricultural purposes were identified, such as (i) virulence, disease, and defense (57 CDS) (i.e., resistance to antibiotics and toxic compounds (34 CDS), invasion and intracellular resistance (12 CDS), and bacteriocins and ribosomally synthesized antibacterial peptides (10 CDS)), (ii) iron acquisition and metabolism (36 CDS), and (iii) secondary metabolism (4 CDS), i.e., auxin biosynthesis. In addition, subsystems related to the viability of an active ingredient for agricultural bioproducts were identified, such as (i) stress response (65 CDS). These genomic traits are correlated with the metabolic background of this strain, and its positive effects on wheat growth regulation reported in this work. Thus, further investigations of Priestia sp. TSO9 are necessary to complement findings regarding its application in agroecosystems to increase wheat yield sustainably

    Plants take action to mitigate salt stress: Ask microbe for help, phytohormones, and genetic approaches

    No full text
    Global agriculture is a pivotal activity performed by various communities worldwide to produce essential human food needs. Plant productivity is limited by several factors, such as salinity, water scarcity, and heat stress. Salinity significantly causes short or long-term impacts on the plant photosynthesis mechanisms by reducing the photosynthetic rate of CO2 assimilation and limiting the stomatal conductance. Moreover, disturbing the plant water status imbalance causes plant growth inhibition. Up-regulation of several plant phytohormones occurs in response to increasing soil salt concentration. In addition, there are different physiological and biochemical mechanisms of salt tolerance, including ion transport, uptake, homeostasis, synthesis of antioxidant enzymes, and osmoprotectants. Besides that, microorganisms proved their ability to increase plant tolerance, Bacillus spp. represents the dominant bacteria of the rhizosphere zone, characterised as harmless microbes with extraordinary abilities to synthesise many chemical compounds to support plants in confronting salinity stress. In addition, applying arbuscular mycorrhizal fungi (AMF) is a promising method to decrease salinity-induced plant damage as it could enhance the growth rate relative to water content. In addition, there is a demand to search for new salt-tolerant crops with more yield and adaptation to unfavourable environmental conditions. The negative impact of salinity on plant growth and productivity, photosynthesis, stomatal conductance, and changes in plant phytohormones biosynthesis, including abscisic acid and salicylic acid, jasmonic acid, ethylene, cytokinins, gibberellins, and brassinosteroids was discussed in this review. The mechanisms evolved to adapt and/or survive the plants, including ion homeostasis, antioxidants, and osmoprotectants biosynthesis, and the microbial mitigate salt stress. In addition, there are modern approaches to apply innovative methods to modify plants to tolerate salinity, especially in the essential crops producing probable yield with a notable result for further optimisation and investigations

    5-Aminolevulinic Acid and 24-Epibrassinolide Improve the Drought Stress Resilience and Productivity of Banana Plants

    No full text
    Plant growth, development, and productivity are adversely affected under drought conditions. Previous findings indicated that 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBL) play an important role in the plant response to adverse environmental conditions. This study demonstrated the role of ALA and EBL on oxidative stress and photosynthetic capacity of drought-stressed ‘Williams’ banana grown under the Egyptian semi-arid conditions. Exogenous application of either ALA or EBL at concentrations of 15, 30, and 45 mg·L−1 significantly restored plant photosynthetic activity and increased productivity under reduced irrigation; this was equivalent to 75% of the plant’s total water requirements. Both compounds significantly reduced drought-induced oxidative damages by increasing antioxidant enzyme activities (superoxide dismutase ‘SOD’, catalase ‘CAT’, and peroxidase ‘POD’) and preserving chloroplast structure. Lipid peroxidation, electrolyte loss and free non-radical H2O2 formation in the chloroplast were noticeably reduced compared to the control, but chlorophyll content and photosynthetic oxygen evolution were increased. Nutrient uptake, auxin and cytokinin levels were also improved with the reduced abscisic acid levels. The results indicated that ALA and EBL could reduce the accumulation of reactive oxygen species and maintain the stability of the chloroplast membrane structure under drought stress. This study suggests that the use of ALA or EBL at 30 mg·L−1 can promote the growth, productivity and fruit quality of drought-stressed banana plants

    Not Available

    No full text
    Not AvailableThe aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.Not Availabl
    corecore