16 research outputs found
Analysis of KSHV B Lymphocyte Lineage Tropism in Human Tonsil Reveals Efficient Infection of CD138+ Plasma Cells
Despite 25 years of research, the basic virology of Kaposi Sarcoma Herpesviruses (KSHV) in B lymphocytes remains poorly understood. This study seeks to fill critical gaps in our understanding by characterizing the B lymphocyte lineage-specific tropism of KSHV. Here, we use lymphocytes derived from 40 human tonsil specimens to determine the B lymphocyte lineages targeted by KSHV early during de novo infection in our ex vivo model system. We characterize the immunological diversity of our tonsil specimens and determine that overall susceptibility of tonsil lymphocytes to KSHV infection varies substantially between donors. We demonstrate that a variety of B lymphocyte subtypes are susceptible to KSHV infection and identify CD138+ plasma cells as a highly targeted cell type for de novo KSHV infection. We determine that infection of tonsil B cell lineages is primarily latent with few lineages contributing to lytic replication. We explore the use of CD138 and heparin sulfate proteoglycans as attachment factors for the infection of B lymphocytes and conclude that they do not play a substantial role. Finally, we determine that the host T cell microenvironment influences the course of de novo infection in B lymphocytes. These results improve our understanding of KSHV transmission and the biology of early KSHV infection in a naïve human host, and lay a foundation for further characterization of KSHV molecular virology in B lymphocyte lineages
An Update of the Virion Proteome of Kaposi Sarcoma-Associated Herpesvirus
The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 other viral proteins, some of which have been characterized as virion-associated using other methods, and 10 novel proteins identified as virion-associated for the first time in this study. These results add KSHV ORF9, ORF23, ORF35, ORF48, ORF58, ORF72/vCyclin, K3, K9/vIRF1, K10/vIRF4, and K10.5/vIRF3 to the list of KSHV proteins that can be incorporated into virions. The addition of these proteins to the KSHV virion proteome provides novel and important insight into early events in KSHV infection mediated by virion-associated proteins. Data are available via ProteomeXchange with identifier PXD022626
\u3cem\u3eIn Vitro\u3c/em\u3e and \u3cem\u3eEx-Vivo\u3c/em\u3e Evaluation of Topical Formulations Designed to Minimize Transdermal Absorption of Vitamin K1
Topical application of Vitamin K1 has been demonstrated to effectively treat papulopustular skin rash, a serious and frequently encountered side effect of Epidermal Growth Factor Inhibitors (EGFRIs). Systemic absorption of vitamin K1 from skin and the resultant consequence of antagonizing EGFRIs anticancer effects jeopardizes the clinical acceptability of this rather effective treatment. The purpose of the present study was to rationally formulate and evaluate the release rate and transdermal absorption of a wide range of Vitamin K1 dermal preparations with a variety of physiochemical properties. A library of 33 formulations with were compounded and tested for Vitamin K1 permeation using hydrophobic membranes and porcine skin mounted in a Fran diffusion cells. Our results demonstrate the lowest diffusion for water-in-oil emulsions, which also demonstrated a negligible transdermal absorption. The statistical analysis showed a significant correlation between in vitro and ex vivo results. While viscosity did not have a significant impact on the diffusion or absorption of vitamin K1, an increase in the lipid content was correlated with an increase in transmembrane diffusion (not with transdermal absorption). Overall, formulation design significantly impacts the release rate and transdermal absorption of vitamin K1, and confirms the possibility of minimal systemic distribution of this vitamin for this specific purpose
Heterogeneity and Plasticity of Human Breast Cancer Cells in Response to Molecularly-Targeted Drugs
Non-responsive subpopulation of tumor cells, and acquired resistance in initially responsive cells are major challenges for cancer therapy with molecularly-targeted drugs. While point mutations are considered the major contributing factor to acquired resistance, in this study we explored the role of heterogeneity and plasticity of selected human breast cancer cell lines (MDA-MB-231, MDA-MB-468, and AU565) in their initial and adjusted response, respectively, to ruxolitinib, everolimus, and erlotinib. After determination of lethal concentration for 50% cell death (LC50), cells were exposed to selected drugs using three different approaches: single exposure to 4 × LC50 and collection of surviving cells, multiple exposures to 1.5 × LC50 and monitoring the surviving population, and exposure to gradually increasing concentrations of selected drugs (range of concentrations equivalent to 10%of LC50 to 1.5 × LC50). Surviving cells were studied for adjustments in expression level of selected proteins using quantitative PCR and Western Blot. Our data indicated overexpression of a variety of proteins in resistant populations, which included cell membrane receptors EGFR and HER2, anti-apoptotic proteins Bcl-2 and BIRC8, and other proteins involved in cell signaling (e.g., Akt1, MAPK7, and RPS6KA5). Silencing the identified alternative proteins via siRNA resulted in significant drop in the LC50 of the selected molecularly-targeted drugs cells resistant to ruxolitinib (via targeting Akt), everolimus (via targeting EGFR, MAPK7, RPS6KA5, and HER2), and erlotinib (via silencing Bcl2 and BIRC8). Our data indicates that targeting well-selected alternative proteins could potentially sensitize the resistant cells to the effect of the molecularly-targeted treatment
Kaposi Sarcoma-Associated Herpesvirus Glycoprotein H Is Indispensable for Infection of Epithelial, Endothelial, and Fibroblast Cell Types
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse mammalian cell types in vitro. Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B cells was equivocal and remains to be investigated in vivo due to generally poor infectivity in vitro. Together, these results suggest that gH is critical for KSHV infection of highly permissive cell types, including epithelial, endothelial, and fibroblast cells. IMPORTANCE All homologues of herpesvirus gH studied to date have been implicated in playing an essential role in viral infection of diverse permissive cell types. However, the role of gH in the mechanism of KSHV infection remains largely unresolved. In this study, we generated a gH-null mutant KSHV and provided evidence that deficiency of gH expression did not affect viral particle assembly or egress. Using the gH-null mutant, we showed that gH was indispensable for KSHV infection of epithelial, endothelial, and fibroblast cells in vitro. This suggests that gH is an important target for the development of a KSHV prophylactic vaccine to prevent initial viral infection
A Multivalent Kaposi Sarcoma-Associated Herpesvirus-Like Particle Vaccine Capable of Eliciting High Titers of Neutralizing Antibodies in Immunized Rabbits
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60–90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo
Viral Factors Influencing Early Infection Events During Ex-Vivo KSHV Infection
The enigma of Kaposi Sarcoma Herpes Virus infection, and its persistence despite a quarter century of research on the virus, has given rise to an immediate need for addressing fundamental questions about basic immunology and virology knowledge regarding this virus. Kaposi Sarcoma Herpes Virus (KSHV), also known as Human Herpesvirus 8 (HHV8), is the etiological agent of Kaposi Sarcoma (KS) and other lymphoproliferative cancers, such as Multicentric Castleman’s Disease (MCD), Primary Effusion Lymphoma (PEL), and a newly discovered rare disease called KSHV Inflammatory Cytokines Syndrome (KICS). Epidemic KS, also known as AIDS-KS, is the most common cancer in untreated HIV patients. This epidemic in western countries mostly affects the homosexual population, while in the malaria-belt, both men and women can be affected equally. All forms of diseases caused by KSHV are uniformly fatal highlighting the need for research into KSHV virology for the identification of possible druggable targets to address the public health burden and help further develop vaccines, therapies, or treatments.
The thesis presented herein will focus on the study of early infection events and the persistence of infection within the oral cavity. We have identified and characterized virion-associated factors critical for the earliest stages of KSHV infection; in three specific aims:
Examining Host-Specific Differences and Viral Tropism in KSHV Infection of Tonsil-Derived B Lymphocytes
Validating the Proteomic Composition of KSHV Virions
Establishing the Contribution of KSHV-ORF11 Tegument Protein in de novo
Infection of B Lymphocytes.
We have demonstrated that gamma-herpesvirus conserved tegument factors play critical but uncharacterized roles in the establishment of infection in B lymphocytes, and that utilizing our study model provides us with the unique chance to observe this infection process at an early stage. Thus, in short, we have attempted to provide an answer to the long-forgotten questions within the field of KSHV virology about the proteins the virion packages and introduces in early stages of infection and what that could mean in the bigger picture for the host -pathogen interactions
An Update of the Virion Proteome of Kaposi Sarcoma-Associated Herpesvirus
The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 other viral proteins, some of which have been characterized as virion-associated using other methods, and 10 novel proteins identified as virion-associated for the first time in this study. These results add KSHV ORF9, ORF23, ORF35, ORF48, ORF58, ORF72/vCyclin, K3, K9/vIRF1, K10/vIRF4, and K10.5/vIRF3 to the list of KSHV proteins that can be incorporated into virions. The addition of these proteins to the KSHV virion proteome provides novel and important insight into early events in KSHV infection mediated by virion-associated proteins. Data are available via ProteomeXchange with identifier PXD022626
KSHV Induces Immunoglobulin Rearrangements in Mature B Lymphocytes
Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is present in vivo in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the current study, we use cell sorting to infect specific B cell lineages from human tonsil specimens in order to examine the immunophenotypic alterations associated with KSHV infection. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV infection and determine that the Igλ monotypic bias of KSHV infection in vivo is due to viral induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expression of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the selective presence of KSHV in Igλ B cells in vivo and provide the first evidence that a human pathogen can manipulate the molecular mechanisms responsible for immunoglobulin diversity
KSHV induces immunoglobulin rearrangements in mature B lymphocytes
<div><p>Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is present <i>in vivo</i> in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the current study, we use cell sorting to infect specific B cell lineages from human tonsil specimens in order to examine the immunophenotypic alterations associated with KSHV infection. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV infection and determine that the Igλ monotypic bias of KSHV infection <i>in vivo</i> is due to viral induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expression of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the selective presence of KSHV in Igλ B cells <i>in vivo</i> and provide the first evidence that a human pathogen can manipulate the molecular mechanisms responsible for immunoglobulin diversity.</p></div