55 research outputs found

    Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice

    Get PDF
    With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles

    Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages

    Get PDF
    Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor κB ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed

    Recent Topics about Nano-safety Science and Its Future

    No full text

    Carbon Nanomaterials: Efficacy and Safety for Nanomedicine

    No full text
    Carbon nanomaterials, including fullerenes, carbon nanohorns, and carbon nanotubes, are increasingly being used in various fields owing to these materials’ unique, size-dependent functions and physicochemical properties. Recently, because of their high variability and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic molecules including peptide and nucleic acid cancer drugs. However, insufficient information is available regarding the safety of carbon nanomaterials for human health, even though such information is vital for the development of safe and effective nanomedicine technologies. In this review, we discuss currently available information regarding the safety of carbon nanomaterials in nanomedicine applications, including information obtained from our own studies; and we discuss types of carbon nanomaterials that demonstrate particular promise for safe nanomedicine technologies

    Polychlorinated Biphenyl Concentrations and Estimated Intakes in Fish Oil Supplements on the Japanese Market

    No full text
    Polychlorinated biphenyls (PCBs) are synthetic organic contaminants that are widespread in the environment. There are 209 PCB congeners. Fish oil produced from marine fish is widely used as a health supplement. PCB contamination of fish oil is of concern. We determined the concentrations of all 209 PCB congeners in commercially available fish oil supplements from Japan and estimated PCB intakes for humans consuming the supplements. We determined the concentrations of non–dioxin-like PCBs separately. The total PCB concentrations in 37 fish oil supplements purchased in Japan were 0.024–19 ng/g whole weight, and the non–dioxin-like PCB concentration range was also 0.024–19 ng/g whole weight. The total PCB intakes calculated for a 50 kg human consuming the supplements were 0.039–51 ng/day (0.00078–1.0 ng/(kg body weight per day)) and the non–dioxin-like PCB intake range was also 0.039–51 ng/day (0.00078–1.0 ng/(kg body weight per day)). The total PCB intakes were much lower than the tolerable daily intake of 20 ng/(kg body weight per day) recommended by the WHO. The results indicated that PCBs in the fish oil supplements pose acceptable risks to humans consuming the fish oil supplements daily
    corecore