14 research outputs found

    Fermi-liquid theory of the surface impedance of a metal in a normal magnetic field

    Full text link
    In this paper we present detailed theoretical analysis of the frequency and/or magnetic field dependence of the surface impedance of a metal at the anomalous skin effect. We calculate the surface impedance in the presence of a magnetic field directed along the normal to the metal surface. The effects of the Fermi-liquid interactions on the surface impedance are studied. It is shown that the cyclotron resonance in a normal magnetic field may be revealed {\it only and exclusively} in such metals whose Fermi surfaces include segments where its Gaussian curvature turns zero. The results could be applied to extract extra informations concerning local anomalies in the Fermi surface curvature in conventional and quasi-two-dimensional metals.Comment: 10 pages, 1 figure, text added and rearranged, computational details are moved into Appendice

    Acoustic Cyclotron Resonance and Giant High Frequency Magnetoacoustic Oscillations in Metals with Locally Flattened Fermi Surface

    Full text link
    We consider the effect of local flattening on the Fermi surface (FS) of a metal upon geometric oscillations of the velocity and attenuation of ultrasonic waves in the neighborhood of the acoustic cyclotron resonance. It is shown that such peculiarities of the local geometry of the FS can lead to a significant enhancement of both cyclotron resonance and geometric oscillations. Characteristic features of the coupling of ultrasound to shortwave cyclotron waves arising due to the local flattening of the FS are analyzed. PACS numbers 71.18.+y; 72.15.Gd; 72.15.-vComment: 8 pages, 3 figures, text revise
    corecore