5 research outputs found
A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India.
A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy
The burden of submicroscopic and asymptomatic malaria in India revealed from epidemiology studies at three varied transmission sites in India.
Malaria in India, while decreasing, remains a serious public health problem, and the contribution of submicroscopic and asymptomatic infections to its persistence is poorly understood. We conducted community surveys and clinic studies at three sites in India differing in their eco-epidemiologies: Chennai (Tamil Nadu), Nadiad (Gujarat), and Rourkela (Odisha), during 2012-2015. A total of 6,645 subject blood samples were collected for Plasmodium diagnosis by microscopy and PCR, and an extensive clinical questionnaire completed. Malaria prevalence ranged from 3-8% by PCR in community surveys (24 infections in Chennai, 56 in Nadiad, 101 in Rourkela), with Plasmodium vivax dominating in Chennai (70.8%) and Nadiad (67.9%), and Plasmodium falciparum in Rourkela (77.3%). A proportional high burden of asymptomatic and submicroscopic infections was detected in community surveys in Chennai (71% and 71%, respectively, 17 infections for both) and Rourkela (64% and 31%, 65 and 31 infections, respectively). In clinic studies, a proportional high burden of infections was identified as submicroscopic in Rourkela (45%, 42 infections) and Chennai (19%, 42 infections). In the community surveys, anemia and fever were significantly more common among microscopic than submicroscopic infections. Exploratory spatial analysis identified a number of potential malaria hotspots at all three sites. There is a considerable burden of submicroscopic and asymptomatic malaria in malarious regions in India, which may act as a reservoir with implications for malaria elimination strategies