14 research outputs found

    Transcriptional diversity of long-term glioblastoma survivors

    Get PDF
    BACKGROUND: Glioblastoma (GBM) is a highly aggressive type of glioma with poor prognosis. However, a small number of patients live much longer than the median survival. A better understanding of these long-term survivors (LTSs) may provide important insight into the biology of GBM. METHODS: We identified 7 patients with GBM, treated at Memorial Sloan-Kettering Cancer Center (MSKCC), with survival \u3e48 months. We characterized the transcriptome of each patient and determined rates of MGMT promoter methylation and IDH1 and IDH2 mutational status. We identified LTSs in 2 independent cohorts (The Cancer Genome Atlas [TCGA] and NCI Repository for Molecular Brain Neoplasia Data [REMBRANDT]) and analyzed the transcriptomal characteristics of these LTSs. RESULTS: The median overall survival of our cohort was 62.5 months. LTSs were distributed between the proneural (n = 2), neural (n = 2), classical (n = 2), and mesenchymal (n = 1) subtypes. Similarly, LTS in the TCGA and REMBRANDT cohorts demonstrated diverse transcriptomal subclassification identities. The majority of the MSKCC LTSs (71%) were found to have methylation of the MGMT promoter. None of the patients had an IDH1 or IDH2 mutation, and IDH mutation occurred in a minority of the TCGA LTSs as well. A set of 60 genes was found to be differentially expressed in the MSKCC and TCGA LTSs. CONCLUSIONS: While IDH mutant proneural tumors impart a better prognosis in the short-term, survival beyond 4 years does not require IDH mutation and is not dictated by a single transcriptional subclass. In contrast, MGMT methylation continues to have strong prognostic value for survival beyond 4 years. These findings have substantial impact for understanding GBM biology and progression

    Radiation in Early-Stage Breast Cancer: Moving beyond an All or Nothing Approach

    No full text
    Radiotherapy omission is increasingly considered for selected patients with early-stage breast cancer. However, with emerging data on the safety and efficacy of radiotherapy de-escalation with partial breast irradiation and accelerated treatment regimens for low-risk breast cancer, it is necessary to move beyond an all-or-nothing approach. Here, we review existing data for radiotherapy omission, including the use of age, tumor subtype, and multigene profiling assays for selecting low-risk patients for whom omission is a reasonable strategy. We review data for de-escalated radiotherapy, including partial breast irradiation and acceleration of treatment time, emphasizing these regimens’ decreasing biological and financial toxicities. Lastly, we review evidence of omission of endocrine therapy. We emphasize ongoing research to define patient selection, treatment delivery, and toxicity outcomes for de-escalated adjuvant therapies better and highlight future directions

    Different Re-Irradiation Techniques after Breast-Conserving Surgery for Recurrent or New Primary Breast Cancer

    No full text
    Breast re-irradiation (reRT) after breast-conserving surgery (BCS) using external beam radiation is an increasingly used salvage approach for women presenting with recurrent or new primary breast cancer. However, radiation technique, dose and fractionation as well as eligibility criteria differ between studies. There is also limited data on efficacy and safety of external beam hypofractionation and accelerated partial-breast irradiation (APBI) regimens. This paper reviews existing retrospective and prospective data for breast reRT after BCS, APBI reRT outcomes and delivery at our institution and the need for a randomized controlled trial using shorter courses of radiation to better define patient selection for different reRT fractionation regimens
    corecore