313 research outputs found

    Comment on “Characterization of Interfacial Properties in Fiber-Reinforced Cementitious Composites”

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65561/1/j.1151-2916.1993.tb03959.x.pd

    Spin selective transport through helical molecular systems

    Get PDF
    Highly spin selective transport of electrons through a helically shaped electrostatic potential is demonstrated in the frame of a minimal model approach. The effect is significant even in the case of weak spin-orbit coupling. Two main factors determine the selectivity, an unconventional Rashba- like spin-orbit interaction, reflecting the helical symmetry of the system, and a weakly dispersive electronic band of the helical system. The weak electronic coupling, associated with the small dispersion, leads to a low mobility of the charges in the system and allows even weak spin-orbit interactions to be effective. The results are expected to be generic for chiral molecular systems displaying low spin-orbit coupling and low conductivity.Comment: 9 pages, 4 figures v2 (misprints corrected, new figures

    Collective effects in charge transfer within a hybrid organic-inorganic system

    Full text link
    A collective electron transfer (ET) process was discovered by studying the current noise in a field effect transistor with light-sensitive gate formed by nanocrystals linked by organic molecules to its surface. Fluctuations in the ET through the organic linker are reflected in the fluctuations of the transistor conductivity. The current noise has an avalanche character. Critical exponents obtained from the noise power spectra, avalanche distributions, and the dependence of the average avalanche size on avalanche duration are consistent with each other. A plausible model is proposed for this phenomenonComment: 15 pages 4 figures. Accepted for publication in Physical Review Letter

    Poisson transition rates from time-domain measurements with finite bandwidth

    Full text link
    In time-domain measurements of a Poisson two-level system, the observed transition rates are always smaller than those of the actual system, a general consequence of finite measurement bandwidth in an experiment. This underestimation of the rates is significant even when the measurement and detection apparatus is ten times faster than the process under study. We derive here a quantitative form for this correction using a straightforward state-transition model that includes the detection apparatus, and provide a method for determining a system's actual transition rates from bandwidth-limited measurements. We support our results with computer simulations and experimental data from time-domain measurements of quasiparticle tunneling in a single-Cooper-pair transistor.Comment: 4 pages, 5 figure

    The association of serotype and pulsed-field gel electrophoresis genotype in isolates of Streptococcus pneumoniae isolated in Israel

    Get PDF
    SummaryThe relationship between Streptococcus pneumoniae isolates causing invasive infections in children admitted to a single center in central Israel was examined by pulsed-field gel electrophoresis (PFGE) and serotyping. Although there was a close correlation between serotype and PFGE clone, the genetic diversity varied by serotype, with some genotypes comprising multiple serotypes. Additionally, clones C and D were associated with higher penicillin minimum inhibitory concentrations. Serotyping alone may be insufficient for epidemiological mapping of pneumococcal isolates in the era of pneumococcal conjugate polysaccharide vaccines

    An analytical model for granular jamming beams with applications in morphing aerostructures

    Get PDF

    Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    Full text link
    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50-300 kΩ\Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltages. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory.Comment: 4 pages, REVTeX, submitted to PR

    Quantum Fluctuations in the Chirped Pendulum

    Full text link
    An anharmonic oscillator when driven with a fast, frequency chirped voltage pulse can oscillate with either small or large amplitude depending on whether the drive voltage is below or above a critical value-a well studied classical phenomenon known as autoresonance. Using a 6 GHz superconducting resonator embedded with a Josephson tunnel junction, we have studied for the first time the role of noise in this non-equilibrium system and find that the width of the threshold for capture into autoresonance decreases as the square root of T, and saturates below 150 mK due to zero point motion of the oscillator. This unique scaling results from the non-equilibrium excitation where fluctuations, both quantum and classical, only determine the initial oscillator motion and not its subsequent dynamics. We have investigated this paradigm in an electrical circuit but our findings are applicable to all out of equilibrium nonlinear oscillators.Comment: 5 pages, 4 figure
    • …
    corecore