4 research outputs found

    Genomic microsatellites identify shared Jewish ancestry intermediate between Middle Eastern and European populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic studies have often produced conflicting results on the question of whether distant Jewish populations in different geographic locations share greater genetic similarity to each other or instead, to nearby non-Jewish populations. We perform a genome-wide population-genetic study of Jewish populations, analyzing 678 autosomal microsatellite loci in 78 individuals from four Jewish groups together with similar data on 321 individuals from 12 non-Jewish Middle Eastern and European populations.</p> <p>Results</p> <p>We find that the Jewish populations show a high level of genetic similarity to each other, clustering together in several types of analysis of population structure. Further, Bayesian clustering, neighbor-joining trees, and multidimensional scaling place the Jewish populations as intermediate between the non-Jewish Middle Eastern and European populations.</p> <p>Conclusion</p> <p>These results support the view that the Jewish populations largely share a common Middle Eastern ancestry and that over their history they have undergone varying degrees of admixture with non-Jewish populations of European descent.</p

    Mathematical and Simulation-Based Analysis of the Behavior of Admixed Taxa in the Neighbor-Joining Algorithm

    No full text
    The neighbor-joining algorithm for phylogenetic inference (NJ) has been seen to have three specific properties when applied to distance matrices that contain an admixed taxon: (1) antecedence of clustering, in which the admixed taxon agglomerates with one of its source taxa before the two source taxa agglomerate with each other; (2) intermediacy of distances, in which the distance on an inferred NJ tree between an admixed taxon and either of its source taxa is smaller than the distance between the two source taxa; and (3) intermediacy of path lengths, in which the number of edges separating the admixed taxon and either of its source taxa is less than or equal to the number of edges between the source taxa. We examine the behavior of neighbor-joining on distance matrices containing an admixed group, investigating the occurrence of antecedence of clustering, intermediacy of distances, and intermediacy of path lengths. We first mathematically predict the frequency with which the properties are satisfied for a labeled unrooted binary tree selected uniformly at random in the absence of admixture. We then introduce a taxon constructed by a linear admixture of distances from two source taxa, examining three admixture scenarios by simulation: a model in which distance matrices are chosen at random, a model in which an admixed taxon is added to a set of taxa that reflect treelike evolution, and a model that introduces a perturbation of the treelike scenario. In contrast to previous conjectures, we observe that the three properties are sometimes violated by distance matrices that include an admixed taxon. However, we also find that they are satisfied more often than is expected by chance when the distance matrix contains an admixed taxon, especially when evolution among the non-admixed taxa is treelike. The results contribute to a deeper understanding of the nature of evolutionary trees constructed from data that do not necessarily reflect a treelike evolutionary process

    THE BEHAVIOR OF ADMIXED POPULATIONS IN NEIGHBOR-JOINING INFERENCE OF POPULATION TREES

    No full text
    Neighbor-joining is one of the most widely used methods for constructing evolutionary trees. This approach from phylogenetics is often employed in population genetics, where distance matrices obtained from allele frequencies are used to produce a representation of population relationships in the form of a tree. In phylogenetics, the utility of neighbor-joining derives partly from a result that for a class of distance matrices including those that are additive or tree-like—generated by summing weights over the edges connecting pairs of taxa in a tree to obtain pairwise distances—application of neighbor-joining recovers exactly the underlying tree. For populations within a species, however, migration and admixture can produce distance matrices that reflect more complex processes than those obtained from the bifurcating trees typical in the multispecies context. Admixed populations— populations descended from recent mixture of groups that have long been separated—have been observed to be located centrally in inferred neighbor-joining trees, with short external branches incident to the path connecting their source populations. Here, using a simple model, we explore mathematically the behavior of an admixed population under neighbor-joining. We show that with an additive distance matrix, a population admixed among two source populations necessarily lies on the path between the sources. Relaxing the additivity requirement, we examine the smallest nontrivia
    corecore