4 research outputs found

    Prevalence and risk factors for intestinal carriage of CTX-M-type ESBLs in Enterobacteriaceae from a Thai community

    Get PDF
    The incidence of infections caused by antimicrobial-resistant Enterobacteriaceae in Thailand is increasing and human intestinal flora is an important reservoir for these organisms. This study was carried out to determine the intestinal carriage of bla CTX-M extended spectrum ß-lactamase-positive Enterobacteriaceae (ESBL + E) and AmpC-positive Enterobacteriaceae in a community setting in Northern Thailand, and to identify potential risk factors for carriage. A total of 307 fecal samples were collected from healthy volunteers in Phitsanulok province, and cefotaxime-resistant Enterobacteriaceae (CtxRE) were isolated using selective media. Polymerase chain reaction (PCR) was used to detect ESBL and AmpC genes. Risk factors were analyzed using multiple logistic regression. Genotyping was performed by multilocus sequence typing (MLST) analysis. Two hundred ninety-one CtxRE isolates were obtained and Escherichia coli was the predominant organism (66.3%). The intestinal carriage rates of bla CTX-M ESBL + E and AmpC-positive Enterobacteriaceae were 52.1% and 6.2%, respectively. Comparative levels of bla CTX-M group 1 and bla CTX-M group 9 were found while bla CMY-2 was the predominant genotype among AmpC genes. Co-existence of two ß-lactamase genes in a single isolate was found in 6.5% of isolates. Consumption of undercooked meat was strongly associated with intestinal carriage of bla CTX-M ESBL + E (p = 0.003, OR = 2.133, 95% CI = 1.289–3.530). Phylogenetic grouping and MLST analysis of E. coli isolates revealed the presence of E. coli B2-ST131 (n = 8). Of these, seven carried bla CTX-M-group 9 and 1 carried bla CMY-2. Our results suggest that residents in Thailand are at high risk for developing endogenous infections caused by antibiotic-resistant Enterobacteriaceae

    Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?

    Get PDF
    Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
    corecore