28 research outputs found

    Single Amino Acid Substitution the DNA Repairing Gene Radiation-Sensitive 4 Contributes to Ultraviolet Tolerance of a Plant Pathogen

    Get PDF
    To successfully survive and reproduce, all species constantly modify the structure and expression of their genomes to cope with changing environmental conditions including ultraviolet (UV) radiation. Thus, knowledge of species adaptation to environmental changes is a central theme of evolutionary studies which could have important implication for disease management and social-ecological sustainability in the future but is generally insufficient. Here, we investigated the evolution of UV adaptation in organisms by population genetic analysis of sequence structure, physiochemistry, transcription, and fitness variation in the radiation-sensitive 4 (RAD4) gene of the Irish potato famine pathogen Phytophthora infestans sampled from various altitudes. We found that RAD4 is a key gene determining the resistance of the pathogen to UV stress as indicated by strong phenotype-genotype-geography associations and upregulated transcription after UV exposure. We also found conserved evolution in the RAD4 gene. Only five nucleotide haplotypes corresponding to three protein isoforms generated by point mutations were detected in the 140 sequences analyzed and the mutations were constrained to the N-terminal domain of the protein. Physiochemical changes associated with non-synonymous mutations generate severe fitness penalty to mutants, which are purged out by natural selection, leading to the conserved evolution observed in the gene

    A Nonsecosteroidal Vitamin D Receptor Modulator Ameliorates Experimental Autoimmune Encephalomyelitis without Causing Hypercalcemia

    Get PDF
    Vitamin D receptor (VDR) agonists are currently the agents of choice for the treatment of psoriasis, a skin inflammatory indication that is believed to involve an autoimmune component. 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active metabolite of vitamin D, has shown efficacy in animal autoimmune disease models of multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and type I diabetes. However, the side effect of 1,25-(OH)2D3 and its synthetic secosteroidal analogs is hypercalcemia, which is a major impediment in their clinical development for autoimmune diseases. Hypercalcemia develops as a result of the action of VDR agonists on the intestine. Here, we describe the identification of a VDR modulator (VDRM) compound A that was transcriptionally less active in intestinal cells and as a result exhibited less calcemic activity in vivo than 1,25-(OH)2D3. Cytokine analysis indicated that the VDRM not only modulated the T-helper cell balance from Th1 to Th2 effector function but also inhibited Th17 differentiation. Finally, we demonstrate that the oral administration of compound A inhibited the induction and progress of experimental autoimmune encephalomyelitis in mice without causing hypercalcemia

    Environmental chemical-induced bone marrow B cell apoptosis: Death receptor-independent activation of a caspase-3 to caspase-8 pathway

    Get PDF
    ABSTRACT Programmed cell death is a critical process in B lymphocyte development. Premature apoptosis in developing B cells could affect the repertoire and number of mature B cells produced. Of particular concern is the ability of environmentally ubiquitous polycyclic aromatic hydrocarbons (PAH) to induce B cell apoptosis within the bone marrow microenvironment in a clonally nonspecific way. Here, models of bone marrow B cell development were used to assess the role of the "extrinsic" apoptosis pathway in PAH-induced apoptosis and to compare PAH-induced apoptosis with that induced during clonal deletion. A

    Cpg-ODN, a TLR9 Agonist, Aggravates Myocardial Ischemia/Reperfusion Injury by Activation of TLR9-P38 MAPK Signaling

    Get PDF
    Background/Aims: Toll-like receptors (TLRs) have been implicated in myocardial ischemia/ reperfusion (I/R) injury. We examined the effect of CpG-oligodeoxynucleotide (ODN) on myocardial I/R injury. Methods: Male Sprague-Dawley rats were treated with either CpG-ODN or control ODN 1 h prior to myocardial ischemia (30 min) followed by reperfusion. Rats treated with phosphate-buffered saline (PBS) served as I/R controls (n = 8/group). Infarct size was determined by 2,3,5-triphenyltetrazolium chloride and Evans blue straining. Cardiac function was examined by echocardiography before and up to 14 days after myocardial I/R. Results: CpG-ODN administration significantly increased infarct size and reduced cardiac function and survival rate after myocardial I/R, compared to the PBS-treated I/R group. Control-ODN did not alter I/R-induced myocardial infarct size, cardiac dysfunction, and survival rate. Additionally, CpG-ODN promoted I/R-induced myocardial apoptosis and cleaved caspase-3 levels in the myocardium. CpG-ODN increased TLR9 activation and p38 phosphorylation in the myocardium. In vitro data also suggested that CpG-ODN treatment induced TLR9 activation and p38 phosphorylation. Importantly, p38 mitogen-activated protein kinase (MAPK) inhibition abolished CpG-ODN-induced cardiac injury. Conclusion: CpG-ODN, the TLR9 ligand, accelerates myocardial I/R injury. The mechanisms involve activation of the TLR9-p38 MAPK signaling pathway

    Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations

    Get PDF
    BACKGROUND: The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. METHODS: Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. RESULTS: Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. CONCLUSIONS: Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF

    Enhanced photovoltage in perovskite-type artificial superlattices on Si substrates

    Get PDF
    Abstract We have fabricated a three-component perovskite-type superlattice (SL) consisting of La 0.9 Sr 0.1 MnO 3 , SrTiO 3 and LaAlO 3 with atomic scale control by laser molecular beam epitaxy on Si substrates. When a He-Ne laser irradiated the superlattice by side illumination, a stable photovoltage was produced and the responsivity reached 46.7 mV mW −1 which is six times higher than that of a similarly grown La 0.9 Sr 0.1 MnO 3 single layer on Si substrates. This work demonstrates the potential of the present SL in photo-detectors operating at room temperature

    The Initiation, but Not the Persistence, of Experimental Spondyloarthritis Is Dependent on Interleukin-23 Signaling

    Get PDF
    IL-17A is a central driver of spondyloarthritis (SpA), its production was originally proposed to be IL-23 dependent. Emerging preclinical and clinical evidence suggests, however, that IL-17A and IL-23 have a partially overlapping but distinct biology. We aimed to assess the extent to which IL-17A-driven pathology is IL-23 dependent in experimental SpA. Experimental SpA was induced in HLA-B27/Huβ2m transgenic rats, followed by prophylactic or therapeutic treatment with an anti-IL23R antibody or vehicle control. Spondylitis and arthritis were scored clinically and hind limb swelling was measured. Draining lymph node cytokine expression levels were analyzed directly ex vivo, and IL-17A protein was measured upon restimulation with PMA/ionomycin. Prophylactic treatment with anti-IL23R completely protected against the development of both spondylitis and arthritis, while vehicle-treated controls did develop spondylitis and arthritis. In a therapeutic study, anti-IL23R treatment failed to reduce the incidence or decrease the severity of experimental SpA. Mechanistically, expression of downstream effector cytokines, including IL-17A and IL-22, was significantly suppressed in anti-IL23R versus vehicle-treated rats in the prophylactic experiments. Accordingly, the production of IL-17A upon restimulation was reduced. In contrast, there was no difference in IL-17A and IL-22 expression after therapeutic anti-IL23R treatment. Targeting the IL-23 axis during the initiation phase of experimental SpA—but not in established disease—inhibits IL-17A expression and suppresses disease, suggesting the existence of IL-23-independent IL-17A production. Whether IL-17A can be produced independent of IL-23 in human SpA remains to be established
    corecore