22 research outputs found

    APOE ε4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study

    Get PDF
    Background: Cerebrospinal fluid (CSF) biomarkers Aβ1-42, t-tau and p-tau have a characteristic pattern in Alzheimer’s Disease (AD). Their roles in HIV-associated neurocognitive disorder (HAND) remains unclear. Methods: Adults with chronic treated HIV disease were recruited (n = 43, aged 56.7 ± 7.9; 32% aged 60+; median HIV duration 20 years, \u3e95% plasma and CSF HIV RNA \u3c50 cp/mL, on cART for a median 24 months). All underwent standard neuropsychological testing (61% had HAND), APOE genotyping (30.9% carried APOE ε4 and 7.1% were ε4 homozygotes) and a lumbar puncture. Concentrations of Aβ1-42, t-tau and p-tau were assessed in the CSF using commercial ELISAs. Current neurocognitive status was defined using the continuous Global Deficit Score, which grades impairment in clinically relevant categories. History of HAND was recorded. Univariate correlations informed multivariate models, which were corrected for nadir CD4-T cell counts and HIV duration. Results: Carriage of APOE ε4 predicted markedly lower levels of CSF Aβ1-42 in univariate (r = -.50; p = .001) and multivariate analyses (R2 = .25; p \u3c .0003). Greater levels of neurocognitive impairment were associated with higher CSF levels of p-tau in univariate analyses (r = .32; p = .03) and multivariate analyses (R2 = .10; p = .03). AD risk prediction cut-offs incorporating all three CSF biomarkers suggested that 12.5% of participants had a high risk for AD. Having a CSF-AD like profile was more frequent in those with current (p = .05) and past HIV-associated dementia (p = .03). Conclusions: Similarly to larger studies, APOE ε4 genotype was not directly associated with HAND, but moderated CSF levels of Aβ1-42 in a minority of participants. In the majority of participants, increased CSF p-tau levels were associated with current neurocognitive impairment. Combined CSF biomarker risk for AD in the current HIV+ sample is more than 10 times greater than in the Australian population of the same age. Larger prospective studies are warranted

    LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human Immunodeficiency Virus-1 (HIV-1) associated neurocognitive disorders (HANDs) are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART). While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2) as a novel regulator of microglial phagocytosis and activation in an <it>in vitro</it> model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs.</p> <p>Methods</p> <p>We treated BV-2 immortalized mouse microglia cells with the HIV-1 <it>trans</it> activator of transcription (Tat) protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i). We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized <it>ex vivo</it> microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons.</p> <p>Results</p> <p>We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence of Tat-activated microglia, as well as AnnexinV, a phosphatidylserine-binding protein. In addition, LRRK2i decreased brain-specific angiogenesis inhibitor 1 (BAI1) receptor expression on BV-2 cells after Tat-treatment, a key receptor in phosphatidylserine-mediated phagocytosis.</p> <p>Conclusion</p> <p>Taken together, these results implicate LRRK2 as a key player in microglial inflammation and, in particular, in the phagocytosis of neuronal elements. These studies show that LRRK2 kinase inhibition may prove an effective therapeutic strategy for HANDs, as well as other neuroinflammatory conditions.</p
    corecore