43 research outputs found

    Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major problem with the use of current chemotherapy regimens for several cancers, including breast cancer, is development of intrinsic or acquired drug resistance, which results in disease recurrence and metastasis. However, the mechanisms underlying this drug resistance are unknown. To study the molecular mechanisms underlying the invasive and metastatic activities of drug-resistant cancer cells, we generated a doxorubicin-resistant MCF-7 breast cancer cell line (MCF-7/DOX).</p> <p>Methods</p> <p>We used MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, flow cytometry assays, DNA fragmentation assays, Western blot analysis, cell invasion assays, small interfering RNA (siRNA) transfection, reverse transcription-polymerase chain reaction, experimental lung metastasis models, and gelatin and fibrinogen/plasminogen zymography to study the molecular mechanism of metastatic activities in MCF-7/DOX cells.</p> <p>Results</p> <p>We found that MCF-7/DOX acquired invasive activities. In addition, Western blot analysis showed increased expression of epidermal growth factor receptor (EGFR) and Cox-2 in MCF-7/DOX cells. Inhibition of Cox-2, phosphoinositide 3-kinase (PI3K)/Akt, or mitogen-activated protein kinase (MAPK) pathways effectively inhibited the invasive activities of MCF-7/DOX cells. Gelatin and fibrinogen/plasminogen zymography analysis showed that the enzymatic activities of matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator were markedly higher in MCF-7/DOX cells than in the MCF-7 cells. <it>In vitro </it>invasion assays and mouse models of lung metastasis demonstrated that MCF-7/DOX cells acquired invasive abilities. Using siRNAs and agonists specific for prostaglandin E (EP) receptors, we found that EP1 and EP3 played important roles in the invasiveness of MCF-7/DOX cells.</p> <p>Conclusions</p> <p>We found that the invasive activity of MCF-7/DOX cells is mediated by Cox-2, which is induced by the EGFR-activated PI3K/Akt and MAPK pathways. In addition, EP1 and EP3 are important in the Cox-2-induced invasion of MCF-7/DOX cells. Therefore, not only Cox-2 but also EP1 and EP3 could be important targets for chemosensitization and inhibition of metastasis in breast cancers that are resistant to chemotherapy.</p

    P130Cas Attenuates Epidermal Growth Factor (EGF) Receptor Internalization by Modulating EGF-Triggered Dynamin Phosphorylation

    Get PDF
    BACKGROUND: Endocytosis controls localization-specific signal transduction via epidermal growth factor receptor (EGFR), as well as downregulation of that receptor. Extracellular matrix (ECM)-integrin coupling induces formation of macromolecular complexes that include EGFR, integrin, Src kinase and p130Cas, resulting in EGFR activation. In addition, cell adhesion to ECM increases EGFR localization at the cell surface and reduces EGFR internalization. The molecular mechanisms involved are not yet well understood. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular mechanism by which p130Cas affects the endocytic regulation of EGFR. Biochemical quantification revealed that cell adhesion to fibronectin (FN) increases total EGFR levels and its phosphorylation, and that p130Cas is required for this process. Measurements of Texas Red-labeled EGF uptake and cell surface EGFR revealed that p130Cas overexpression reduces EGF-induced EGFR internalization, while p130Cas depletion enhances it. In addition, both FN-mediated cell adhesion and p130Cas overexpression reduce EGF-stimulated dynamin phosphorylation, which is necessary for EGF-induced EGFR internalization. Coimmunoprecipitation and GST pull-down assays confirmed the interaction between p130Cas and dynamin. Moreover, a SH3-domain-deleted form of p130Cas, which shows diminished binding to dynamin, inhibits dynamin phosphorylation and EGF uptake less effectively than wild-type p130Cas. CONCLUSIONS/SIGNIFICANCE: Our results show that p130Cas plays an inhibitory role in EGFR internalization via its interaction with dynamin. Given that the EGFR internalization process determines signaling density and specificity in the EGFR pathway, these findings suggest that the interaction between p130Cas and dynamin may regulate EGFR trafficking and signaling in the same manner as other endocytic regulatory proteins related to EGFR endocytosis

    Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer

    Get PDF
    Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation[superscript 1, 2]. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes[superscript 3]. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of Ξ±-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.Susan G. Komen Breast Cancer Foundation (Fellowship)Life Sciences Research Foundation (Fellowship)W. M. Keck FoundationDavid H. Koch Cancer Research FundAlexander and Margaret Stewart TrustNational Institutes of Health (U.S.) (Grant CA103866

    Inspection of piping wall loss with flow accelerated corrosion accelerated simulation test

    No full text
    Flow Accelerated Corrosion (FAC) has become a hot issue for aging of passive components. Ultrasonic Technique (UT) has been adopted to inspect the secondary piping of Nuclear Power Plants (NPPs). UT, however, uses point detection method, which results in numerous detecting points and thus takes time. We developed an Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to monitor the thickness of piping that covers wide range of piping at once time. Since the ES-DCPD method covers area, not a point, it needs less monitoring time. This can be a good approach to broad carbon steel piping system such as secondary piping of NPPs. In this paper, FA C accelerated simulation test results is described. We realized accelerated FAC phenomenon by 2 times test: 23.7% thinning in 216.7 hours and 51% thinning in 795 hours. These were monitored by ES-DCPD and traditional UT. Some parameters of water chemistry are monitored and controlled to accelerate FA C process. As sensitive factors on FAC, temperature and pH was changed during the test. The wall loss monitored results reflected these changes of water chemistry successfully. Developed electrodes are also applied to simulation loop to monitor water chemistry
    corecore