82 research outputs found
Learning to Selectively Transfer: Reinforced Transfer Learning for Deep Text Matching
Deep text matching approaches have been widely studied for many applications
including question answering and information retrieval systems. To deal with a
domain that has insufficient labeled data, these approaches can be used in a
Transfer Learning (TL) setting to leverage labeled data from a resource-rich
source domain. To achieve better performance, source domain data selection is
essential in this process to prevent the "negative transfer" problem. However,
the emerging deep transfer models do not fit well with most existing data
selection methods, because the data selection policy and the transfer learning
model are not jointly trained, leading to sub-optimal training efficiency.
In this paper, we propose a novel reinforced data selector to select
high-quality source domain data to help the TL model. Specifically, the data
selector "acts" on the source domain data to find a subset for optimization of
the TL model, and the performance of the TL model can provide "rewards" in turn
to update the selector. We build the reinforced data selector based on the
actor-critic framework and integrate it to a DNN based transfer learning model,
resulting in a Reinforced Transfer Learning (RTL) method. We perform a thorough
experimental evaluation on two major tasks for text matching, namely,
paraphrase identification and natural language inference. Experimental results
show the proposed RTL can significantly improve the performance of the TL
model. We further investigate different settings of states, rewards, and policy
optimization methods to examine the robustness of our method. Last, we conduct
a case study on the selected data and find our method is able to select source
domain data whose Wasserstein distance is close to the target domain data. This
is reasonable and intuitive as such source domain data can provide more
transferability power to the model.Comment: Accepted to WSDM 201
Telomerase activity in melanoma and non-melanoma skin cancer
Telomeres are specialized structures consisting of repeat arrays of TTAGGGn located at the ends of chromosomes. They are essential for chromosome stability and, in the majority of normal somatic cells, telomeres shorten with each cell division. Most immortalized cell lines and tumours reactivate telomerase to stabilize the shortening chromosomes. Telomerase activation is regarded as a central step in carcinogenesis and, here, we demonstrate telomerase activation in premalignant skin lesions and also in all forms of skin cancer. Telomerase activation in normal skin was a rare event, and among 16 samples of normal skin (one with a history of chronic sun exposure) 12.5% (2 out of 16) exhibited telomerase activity. One out of 16 (6.25%) benign proliferative lesions, including viral and seborrhoeic wart samples, had telomerase activity. In premalignant actinic keratoses and Bowen's disease, 42% (11 out of 26) of samples exhibited telomerase activity. In the basal cell carcinoma and cutaneous malignant melanoma (CMM) lesions, telomerase was activated in 77% (10 out of 13) and 69% (22 out of 32) respectively. However, only 25% (3 out of 12) of squamous cell carcinomas (SCC) had telomerase activity. With the exception of one SCC sample, telomerase activity in a positive control cell line derived from a fibrosarcoma (HT1080) was not inhibited when mixed with the telomerase-negative SCC or CMM extracts, indicating that, overall, Taq polymerase and telomerase inhibitors were not responsible for the negative results. Mean telomere hybridizing restriction fragment (TRF) analysis was performed in a number of telomerase-positive and -negative samples and, although a broad range of TRF sizes ranging from 3.6 to 17 kb was observed, a relationship between telomerase status and TRF size was not found
Genome-Wide Association Study Identifies Risk Loci for Cluster Headache
OBJECTIVE: To identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model, for each cohort. The two cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified two replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 x 10-17 , OR [95%CI] = 1.51 [1.37-1.66]) and rs4519530 (p = 6.98 x 10-17 , OR = 1.47 [1.34-1.61]) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 x 10-8 , OR = 1.36 [1.22-1.52]) and rs11153082 (p = 1.85 x 10-8 , OR = 1.30 [1.19-1.42]) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide-significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to e.g. treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache
Malaria vector research and control in Haiti: a systematic review
BACKGROUND: Haiti has a set a target of eliminating malaria by 2020. However, information on malaria vector research in Haiti is not well known. This paper presents results from a systematic review of the literature on malaria vector research, bionomics and control in Haiti. METHODS: A systematic search of literature published in French, Spanish and English languages was conducted in 2015 using Pubmed (MEDLINE), Google Scholar, EMBASE, JSTOR WHOLIS and Web of Science databases as well other grey literature sources such as USAID, and PAHO. The following search terms were used: malaria, Haiti, Anopheles, and vector control. RESULTS: A total of 132 references were identified with 40 high quality references deemed relevant and included in this review. Six references dealt with mosquito distribution, seven with larval mosquito ecology, 16 with adult mosquito ecology, three with entomological indicators of malaria transmission, eight with insecticide resistance, one with sero-epidemiology and 16 with vector control. In the last 15 years (2000–2015), there have only been four published papers and three-scientific meeting abstracts on entomology for malaria in Haiti. Overall, the general literature on malaria vector research in Haiti is limited and dated. DISCUSSION: Entomological information generated from past studies in Haiti will contribute to the development of strategies to achieve malaria elimination on Hispaniola. However it is of paramount importance that malaria vector research in Haiti is updated to inform decision-making for vector control strategies in support of malaria elimination
Genome-Wide Association Study Identifies Risk Loci for Cluster Headache.
OBJECTIVE: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021
Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channel Scn2a
Mutations in the voltage-gated sodium channels SCN1A and SCN2A are responsible for several types of human epilepsy. Variable expressivity among family members is a common feature of these inherited epilepsies, suggesting that genetic modifiers may influence the clinical manifestation of epilepsy. The transgenic mouse model Scn2a Q54 has an epilepsy phenotype as a result of a mutation in Scn2a that slows channel inactivation. The mice display progressive epilepsy that begins with short-duration partial seizures that appear to originate in the hippocampus. The partial seizures become more frequent and of longer duration with age and often induce secondary generalized seizures. Clinical severity of the Scn2a Q54 phenotype is influenced by genetic background. Congenic C57BL/6J.Q54 mice exhibit decreased incidence of spontaneous seizures, delayed seizure onset, and longer survival in comparison with [C57BL/6J × SJL/J]F 1 .Q54 mice. This observation indicates that strain SJL/J carries dominant modifier alleles at one or more loci that determine the severity of the epilepsy phenotype. Genome-wide interval mapping in an N 2 backcross revealed two modifier loci on Chromosomes 11 and 19 that influence the clinical severity of of this sodium channel-induced epilepsy. Modifier genes affecting clinical severity in the Scn2a Q54 mouse model may contribute to the variable expressivity seen in epilepsy patients with sodium channel mutations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46986/1/335_2005_Article_49.pd
Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics
Sensory stimuli fluctuate on many timescales. However, short-term plasticity causes synapses to act as temporal filters, limiting the range of frequencies they can transmit. How synapses in vivo might transmit a range of frequencies in spite of short-term plasticity is poorly understood. The first synapse in the Drosophila olfactory system exhibits short-term depression, and yet can transmit broadband signals. Here we describe two mechanisms that broaden the frequency characteristics of this synapse. First, two distinct excitatory postsynaptic currents transmit signals on different timescales. Second, presynaptic inhibition dynamically updates synaptic properties to promote accurate transmission of signals across a wide range of frequencies. Inhibition is transient but grows slowly, and simulations show that these two features of inhibition promote broadband synaptic transmission. Dynamic inhibition is often thought to restrict the temporal patterns that a neuron responds to, but our results illustrate a different idea: inhibition can expand the bandwidth of neural coding
- …