15 research outputs found

    Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action

    Get PDF
    Introduction The present study was conducted to examine the effect of conjugated docosahexaenoic acid (CDHA) on cell growth, cell cycle progression, mode of cell death, and expression of cell cycle regulatory and/or apoptosis-related proteins in KPL-1 human breast cancer cell line. This effect of CDHA was compared with that of docosahexaenoic acid (DHA). Methods KPL-1 cell growth was assessed by colorimetric 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; cell cycle progression and mode of cell death were examined by flow cytometry; and levels of expression of p53, p21Cip1/Waf1, cyclin D1, Bax, and Bcl-2 proteins were examined by Western blotting analysis. In vivo tumor growth was examined by injecting KPL-1 cells subcutaneously into the area of the right thoracic mammary fat pad of female athymic mice fed a CDHA diet. Results CDHA inhibited KPL-1 cells more effectively than did DHA (50% inhibitory concentration for 72 hours: 97 ÎĽmol/l and 270 ÎĽmol/l, respectively). With both CDHA and DHA growth inhibition was due to apoptosis, as indicated by the appearance of a sub-G1 fraction. The apoptosis cascade involved downregulation of Bcl-2 protein; Bax expression was unchanged. Cell cycle progression was due to G0/G1 arrest, which involved increased expression of p53 and p21Cip1/Waf1, and decreased expression of cyclin D1. CDHA modulated cell cycle regulatory proteins and apoptosis-related proteins in a manner similar to that of parent DHA. In the athymic mouse system 1.0% dietary CDHA, but not 0.2%, significantly suppressed growth of KPL-1 tumor cells; CDHA tended to decrease regional lymph node metastasis in a dose dependent manner. Conclusion CDHA inhibited growth of KPL-1 human breast cancer cells in vitro more effectively than did DHA. The mechanisms of action involved modulation of apoptosis cascade and cell cycle progression. Dietary CDHA at 1.0% suppressed KPL-1 cell growth in the athymic mouse system.</p

    Nutrition and tumor promotion: In vivo methods for measurement of cellular proliferation and protein metabolism

    No full text
    The notion that tumors act as 'nitrogen traps' has led to the belief that nutrition support of the cancer-bearing patient can enhance tumor growth. Proponents of this theory consider the provision of energy and essential nutrients as well as the influence of hormones and growth factors as responsible for this effect. On the other hand, nutrition administration in the debilitated cancer patient may improve antitumor host defense mechanisms and reduce tumor growth. This paper reviews methodologic issues related to the study of nutrition and cancer growth with emphasis on in vivo methods for measuring tumor protein turnover and cytokinetics. Using this combined approach, we previously demonstrated that dietary fat may significantly regulate tumor growth during chronic feeding as well as with short-term intravenous nutrition support in experimental models. Although the mechanism of this effect remains unclear, we have reasoned that by altering arachidonic acid metabolism and prostaglandin synthesis, ω-3 fatty acids could change tumor protein breakdown rates and inhibit the proliferation potential of these tumors. Acknowledging alternative hypotheses, we now present cytokinetic evidence that intracellular protein degradation may regulate tumor cell proliferation. Additional studies relating dietary fat, tumor protein metabolism and tumor proliferation potential are currently in progress. We propose that the effect of nutrition administration on tumor growth is complex and involves several regulatory systems. Thus, based on available evidence, an a priori tumor-enhancing effect for nutrition support is clearly not warranted. Intracellular protein breakdown and host defense mechanisms, both of which are energy dependent, are important loci at which nutrition and tumor growth regulation could interact. Results from experimental tumor models have indicated that specific dietary fats, such as fish oil and structured lipids, may be used favorably in the nutrition support of the cancer patient.link_to_subscribed_fulltex

    Evaluation of antitumor effect of tumor necrosis factor in terms of protein metabolism and cell cycle kinetics

    No full text
    To determine the significance of protein breakdown in regulating tumor growth and to better understand the antitumor mechanism of tumor necrosis factor in vivo, we measured the effects of a 6-h constant intravenous infusion of human recombinant tumor necrosis factor-α (rHuTNF) on tumor protein metabolism and cell cycle kinetics in rats bearing the Walker-256 carcinosarcoma. Protein metabolism was investigated with the use of [14C]leucine infusion; estimates of tumor cell cycle kinetics were obtained in vivo by use of 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling and bivariate BrdUrd/DNA analysis by flow cytometry. Reduction in tumor growth by rHuTNF was associated with a dose-dependent increase in tumor proteolysis but no change in tumor protein synthesis. At the cellular level, rHuTNF had a significant cytostatic effect on G2/M cells and caused a marked decrease in the fraction of cells capable of BrdUrd uptake. Release of BrdUrd, an indicator of cell death, was noted in only 7.5% of tumor cells labeled at the beginning of rHuTNF infusion. These results suggest that either tumor protein breakdown may influence cell cycle activity by regulating cytoplasmic protein mass or that tumor proteolysis may be a compensatory mechanism for limiting cytoplasmic size when cellular division is interrupted suddenly.link_to_subscribed_fulltex

    DNA replication time accounts for tumor growth variation induced by dietary fat in a breast carcinoma model

    No full text
    Female Fischer rats were pair-fed on diets containing either safflower oil (SO) or fish oil (FO) for 6 weeks. Implanted breast 13762 MAT tumors had a doubling times of 35.4 and 55.5 h in SO and FO rats, respectively (P < 0.001). Proliferation kinetics were measured in vivo by bromedeoxyuridine (BrdUrd) labeling and bivariate DNA BrdUrd analysis by flow cytometry. After 1 h of pulsing, the labeling index was similar in both groups. However, 6 h later, tumor cells from FO rats had significantly lower relative movement of BrdUrd-labeled cells (0.78 vs. 0.91, P < 0.001). These results reflected a significantly longer S phase duration (15.0 vs. 9.1 h, P < 0.001) in FO rats and accounted for all the difference in tumor growth rates. This mechanism, which has not previously been reported, implies a significant role for fatty acids in DNA replication.link_to_subscribed_fulltex

    Insulin-like growth factor-1 is not mitogenic for the Walker-256 carcinosarcoma

    No full text
    This study was designed to determine whether intravenous infusion of recombinant human insulin-like growth factor 1 (IGF-1) stimulates tumor growth. In order to determine the potential interaction between nutrition and IGF-1 administration the study was conducted in fasting rats and during continuous feeding by total parenteral nutrition. Tumor cell cycle kinetics including labeling index, DNA synthesis time, cell cycle time in G0/G1, and G2/M in the total cell cycle, and potential doubling time were determined by flow cytometry after in vivo pulse labeling the rats bearing the Walker-256 Carcinosarcoma with 5'-bromo-2'-deoxyuridine (BrdUrd). The results show that IGF-1 treatment has no significant effects on the proliferative characteristics of the tumor model regardless of the feeding status of the animal. This study provides preliminary cell-cycle kinetics data on the short-term effect of IGF-1 on tumor growth. Failure to show a significant effect of IGF-1 on the proliferative characteristics of the tumor suggests that IGF-1 may be given to cancer patients in amounts sufficient to promote weight gain without deleterious stimulation of tumor proliteration.link_to_subscribed_fulltex

    Influence of ω-3 fatty acids on splanchnic blood flow and lactate metabolism in an endotoxemic rat model

    No full text
    Alteration in regional blood flow is important in the pathogenesis of organ failure during endotoxemia and sepsis. In particular, intestinal ischemia is thought to enhance the translocation of bacteria into the systemic circulation. We used radioactive microspheres to measure the influence of two intravenous (IV) dietary fats (vegetable oil containing high levels of ω-6 fatty acids, and fish oil containing high levels of ω-3 fatty acids) on regional blood flow during low-dose Escherichia coli endotoxin infusion (0.1 mg/100 g body weight [BW]) in a rat model. Despite absence of changes in the cardiac output, blood flow rates to the small and large intestines, stomach, and pancreas, and also to the skin and skeletal muscle were significantly reduced after 18 hours of endotoxin infusion in the rats fed standard vegetable oil. Short-term IV feeding during a period of 40 hours with an isonitrogenous, isocaloric nutrient solution containing fish oil as the only lipid source normalized intestinal perfusion and increased blood flow to the liver and spleen. Low-dose endotoxin infusion also resulted in significant increases in glucose, lactate, and pyruvate concentrations. In comparison to standard vegetable fat emulsion, fish oil significantly reduced these parameters. A second experiment was conducted to measure lactate kinetics. Based on the dilution of U-14C-lactate, fish oil feeding was associated with higher lactate clearance than standard vegetable oil feeding during the endotoxin infusion. We conclude that short-term IV feeding with fish oil improves intestinal perfusion and portal blood flow, improves glucose tolerance, and increases lactate clearance in a low-dose endotoxin rat model.link_to_subscribed_fulltex
    corecore