9 research outputs found
Recommended from our members
WSB1 and IL21R Genetic Variants Are Involved in Th2 Immune Responses to Ascaris lumbricoides.
Genetic and epigenetic factors are considered to be critical for host-parasite interactions. There are limited data on the role of such factors during human infections with Ascaris lumbricoides. Here, we describe the potential role of genetic factors as determinants of the Th2 immune response to A. lumbricoides in Brazilian children. Stool samples were collected from the children to detect A. lumbricoides by microscopy and peripheral blood leukocytes (PBLs) were cultured in whole blood cultures for detection of cytokines (IL-5, IL-10, and IL-13) in vitro. Levels of anti-A. lumbricoides IgE and IgG4 were measured in plasma. DNA was extracted from PBLs and genotyped using Illumina 2.5 Human Omni Beadchip. Candidate genes associated with A. lumbricoides responses were identified and SNVs in these selected genes associated with the Th2 immune response to A. lumbricoides. Haplotype, gene expression, and epigenetic analyses were done to identify potential associations with Th2 immune responses. GWAS on samples from 1,189 children identified WSB1 as a candidate gene, and IL-21R was selected as a biologically relevant linked gene for further analysis. Variants in WSB1 and IL21R were associated with markers of Th2 immune responses: increased A. lumbricoides-specific IgE and IL-5/IL-13 by PBLs from infected compared to uninfected individuals. In infected children, WSB1 but not IL21R gene expression was suppressed and increased methylation was observed in the WSB1 promoter region. This is the first study to show an association between genetic variants in WSB1 and IL21R and Th2 immune responses during A. lumbricoides infections in children. WSB1/IL21R pathways could provide a potential target for the treatment of Th2-mediated diseases
Adaptive control design for nonlinearly parameterized systems with a triangular structure
A novel adaptive backstepping design for a class of nonlinearly parameterized systems with a triangular structure is proposed. Under the Lipschitz condition with respect to unknown parameters of the system, an effective adaptive controller is designed without the requirement on the compactness of the unknown parametric set. Especially, the proposed adaptive control enables the advantage of 'tuning function concept', which results in only one estimation law for the unknown parameters. Our simulation with induction motor model particularly shows the viability of the obtained results
Adaptive control for nonlinearly parameterized uncertainties in robot manipulators
In this brief, a new adaptive control framework to compensate for uncertain nonlinear parameters in robot manipulators is developed. The designed adaptive controllers possess a linear parameter structure, guarantee global boundedness of the closed-loop system as well as tracking of a given trajectory within any prescribed accuracy. Our design approach takes advantage of a Lipschitzian property with respect to the plant nonlinear parameters. The outcome is that a very broad class of nonlinearly parameterized adaptive control problems for robot manipulators can be solved using this technique. Another feature of the proposed method is the design of low-dimensional estimator, even 1-D if desired, independently of the unknown parameter vector dimension. Simulations and experiments in friction compensation task for low-velocity tracking of a 2 degree-of-freedom planar robot demonstrate the viability of the technique and emphasize its advantages relatively to more classical approaches. © 2008 IEEE
Tackling undernutrition in the Asian healthcare setting: A Southeast Asian expert consensus
10.6133/apjcn.201811_27(6).0001Asia Pacific Journal of Clinical Nutrition2761161-117
Silicon nanostructures for photonics and photovoltaics
Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material