61 research outputs found
A Synthetic Multidomain Peptide That Drives a Macropinocytosis-Like Mechanism for Cytosolic Transport of Exogenous Proteins into Plants
Direct delivery of proteins into plants represents a promising alternative to conventional gene delivery for probing and modulating cellular functions without the risk of random integration of transgenes into the host genome. This remains challenging, however, because of the lack of a protein delivery tool applicable to diverse plant species and the limited information about the entry mechanisms of exogenous proteins in plant cells. Here, we present the synthetic multidomain peptide (named dTat-Sar-EED4) for cytosolic protein delivery in various plant species via simple peptide-protein coincubation. dTat-Sar-EED4 enabled the cytosolic delivery of an active enzyme with up to ∼20-fold greater efficiency than previously described cell-penetrating peptides in several model plant systems. Our analyses using pharmacological inhibitors and transmission electron microscopy revealed that dTat-Sar-EED4 triggered a unique endocytic mechanism for cargo protein internalization. This endocytic mechanism shares several features with macropinocytosis, including the dependency of actin polymerization, sensitivity to phosphatidylinositol-3 kinase activity, and formation of membrane protrusions and large intracellular vesicles (>200 nm in diameter), even though macropinocytosis has not been identified to date in plants. Our study thus presents a robust molecular tool that can induce a unique cellular uptake mechanism for the efficient transport of bioactive proteins into plants
ABCA7 Gene Expression and Genetic Association Study in Schizophrenia
Introduction: Although ATP-binding cassette sub-family A member 7 gene (ABCA7) is known to be associated with Alzheimer’s disease, the relationship between ABCA7 and schizophrenia has been unknown.
Methods: Schizophrenia patients (n = 50; 24 males, 62.1 ± 0.50 years old) and age- and sex-matched healthy controls (n = 50) were recruited for the mRNA analysis. Additionally, a case-control study for the rs3764650 genotypes was performed with 1308 samples (control subjects; n = 527, schizophrenia patients; n = 781). All participants were Japanese, unrelated to each other, and living in the same area.
Results: The distributions of the rs3764650 genotypes in schizophrenia patients were not different from that of controls. However, the ABCA7 mRNA expression levels in schizophrenia patients were significantly higher than those in controls by a logistic regression analysis. Additionally, the ABCA7 mRNA expression levels in schizophrenia patients were correlated with the rs3764650 genotypes in a dose-dependent manner.
Discussion: The ABCA7 mRNA expression levels in peripheral blood with the rs3764650 genotypes may be related to pathological mechanisms in schizophrenia and may be a biological marker for schizophrenia
Mineral oil certified reference materials for the determination of polychlorinated biphenyls from the National Metrology Institute of Japan (NMIJ)
Four mineral oil certified reference materials (CRMs), NMIJ CRM 7902-a, CRM 7903-a, CRM 7904-a, and CRM 7905-a, have been issued by the National Metrology Institute of Japan, which is part of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST), for the determination of polychlorinated biphenyls (PCBs). The raw materials for the CRMs were an insulation oil (CRM 7902-a and CRM 7903-a) and a fuel oil (CRM7904-a and CRM 7905-a). A solution of PCB3, PCB8, and technical PCB products, comprising four types of Kaneclor, was added to the oil matrices. The total PCB concentrations in the PCB-fortified oils (CRM 7902-a and CRM 7904-a) are approximately 6 mg kg−1. In addition, the mineral oils which were not fortified with PCBs were also distributed as CRMs (CRM 7903-a and CRM 7905-a). Characterization of these CRMs was conducted by the NMIJ/AIST, where the mineral oils and the PCB solution were analyzed using multiple analytical methods such as dimethylsulfoxide extraction, normal-phase liquid chromatography, gel permeation chromatography, reversed-phase liquid chromatography, and chromatography using sulfoxide-bonded silica; and/or various capillary columns for gas chromatography, and two ionization modes for mass spectrometry. The target compounds in the mineral oils and those in the PCB solution were determined by one of the primary methods of measurement, isotope dilution–mass spectrometry (ID-MS). Certified values have been provided for 11 PCB congeners (PCB3, 8, 28, 52, 101, 118, 138, 153, 180, 194, and 206) in the CRMs. These CRMs have information values for PCB homologue concentrations determined by using a Japanese official method for determination of PCBs in wastes and densities determined with an oscillational density meter. Because oil samples having arbitrary PCB concentrations between respective property values of the PCB-fortified and nonfortified CRMs can be prepared by gravimetric mixing of the CRM pairs, these CRMs can be used for validation of PCB analyses using various instruments which have different sensitivities
TREM2 Expression in Schizophrenia
TREM2 and TYROBP are causal genes for Nasu–Hakola disease (NHD), a rare autosomal recessive disease characterized by bone lesions and early-onset progressive dementia. TREM2 forms a receptor signaling complex with TYROBP, which triggers the activation of immune responses in macrophages and dendritic cells, and the functional polymorphism of TREM2 is reported to be associated with neurodegenerative disorders such as Alzheimer’s disease (AD). The objective of this study was to reveal the involvement of TYROBP and TREM2 in the pathophysiology of AD and schizophrenia. Methods: We investigated the mRNA expression level of the 2 genes in leukocytes of 26 patients with AD and 24 with schizophrenia in comparison with age-matched controls. Moreover, we performed gene association analysis between these 2 genes and schizophrenia. Results: No differences were found in TYROBP mRNA expression in patients with AD and schizophrenia; however, TREM2 mRNA expression was increased in patients with AD and schizophrenia compared with controls (P < 0.001). There were no genetic associations of either gene with schizophrenia in Japanese patients. Conclusion: TREM2 expression in leukocytes is elevated not only in AD but also in schizophrenia. Inflammatory processes involving TREM2 may occur in schizophrenia, as observed in neurocognitive disorders such as AD. TREM2 expression in leukocytes may be a novel biomarker for neurological and psychiatric disorders
Peptide-Based Polyion Complex Vesicles That Deliver Enzymes into Intact Plants To Provide Antibiotic Resistance without Genetic Modification
Direct delivery of enzymes into intact plants using cell-penetrating peptides (CPPs) is an attractive approach for modifying plant functions without genetic modification. However, by conventional methods, it is difficult to maintain the enzyme activity for a long time because of proteolysis of the enzymes under physiological conditions. Here, we developed a novel enzyme delivery system using polyion complex vesicles (PICsomes) to protect the enzyme from proteases. We created PICsome-bearing reactive groups at the surface by mixing an anionic block copolymer, alkyne-TEG-P(Lys-COOH), and a cationic peptide, P(Lys). The PICsome encapsulated neomycin phosphotransferase II (NPTII), a kanamycin resistance enzyme, and protected NPTII from proteases in vitro. A CPP-modified PICsome delivered NPTII into the root hair cells of Arabidopsis thaliana seedlings and provided kanamycin resistance in the seedlings that lasted for 7 days. Thus, the PICsome-mediated enzyme delivery system is a promising method for imparting long-term transient traits to plants without genetic modification
Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts
【研究成果】スプレーで植物を改変 --簡便な非遺伝子組換え植物改変法の開発--. 京都大学プレスリリース. 2022-02-24.Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns about its effects on human and animal health and the environment. Here, we present a high-throughput nucleic acids delivery platform for plants using peptide nanocarriers applied to the leaf surface by spraying. The translocation of sub-micrometer-scale nucleic acid/peptide complexes upon spraying varied depending on the physicochemical characteristics of the peptides and was controlled by a stomata-dependent-uptake mechanism in plant cells. We observed efficient delivery of DNA molecules into plants using cell-penetrating peptide (CPP)-based foliar spraying. Moreover, using foliar spraying, we successfully performed gene silencing by introducing small interfering RNA molecules in plant nuclei via siRNA-CPP complexes and, more importantly, in chloroplasts via our CPP/chloroplast-targeting peptide-mediated delivery system. This technology enables effective nontransgenic engineering of economically important plant traits in agricultural systems
Native protein delivery into rice callus using ionic complexes of protein and cell-penetrating peptides.
Direct protein delivery into intact plants remains a challenge for the agricultural and plant science fields. Cell-penetrating peptide (CPP)-mediated protein delivery requires the binding of CPPs to a protein to carry the protein into the cell through the cell wall and lipid bilayer. Thus, we prepared ionic complexes of a CPP-containing carrier peptide and a cargo protein, namely, Citrine yellow fluorescent protein, and subsequently studied their physicochemical properties. Two types of carrier peptides, BP100(KH)9 and BP100CH7, were investigated for delivery efficiency into rice callus. Both BP100(KH)9 and BP100CH7 successfully introduced Citrine protein into rice callus cells under pressure and vacuum treatment. Moreover, delivery efficiency varied at different growth stages of rice callus; 5-day rice callus was a more efficient recipient for Citrine than 21-day callus
Class I Polyhydroxyalkanoate Synthase from the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Predominantly Exists as a Functional Dimer in the Absence of a Substrate
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters that
accumulate as carbon and energy storage compounds in a variety of
micro-organisms. The marine purple photosynthetic bacterium Rhodovulum sulfidophilum is capable of synthesizing
PHA. In this study, we cloned a gene encoding a class I PHA synthase
from R. sulfidophilum (<i>phaC</i><sub><i>Rs</i></sub>) and synthesized PhaC<sub>Rs</sub> using a cell-free protein expression system. The specific activity
of PhaC<sub>Rs</sub> increased linearly as the (<i>R</i>)-3-hydroxybutyryl-coenzyme A (3HB-CoA) concentration increased and
never reached a plateau, even at 3.75 mM 3HB-CoA, suggesting that
PhaC<sub>Rs</sub> was not saturated because of low substrate affinity.
Size exclusion chromatography and native polyacrylamide gel electrophoresis
analyses revealed that PhaC<sub>Rs</sub> exists predominantly as an
active dimer even in the absence of 3HB-CoA, unlike previously characterized
PhaCs. The linear relationship between the PhaC<sub>Rs</sub> activity
and 3HB-CoA concentrations could result from a low substrate affinity
as well as the absence of a rate-limiting step during PHA polymerization
because of the existence of predominantly active dimers
DataSheet_1_Functional peptide-mediated plastid transformation in tobacco, rice, and kenaf.pdf
In plant engineering, plastid transformation is more advantageous than nuclear transformation because it results in high levels of protein expression from multiple genome copies per cell and is unaffected by gene silencing. The common plastid transformation methods are biolistic bombardment that requires special instruments and PEG-mediated transformation that is only applicable to protoplast cells. Here, we aimed to establish a new plastid transformation method in tobacco, rice, and kenaf using a biocompatible fusion peptide as a carrier to deliver DNA into plastids. We used a fusion peptide, KH-AtOEP34, comprising a polycationic DNA-binding peptide (KH) and a plastid-targeting peptide (AtOEP34) to successfully deliver and integrate construct DNA into plastid DNA (ptDNA) via homologous recombination. We obtained transformants in each species using selection with spectinomycin/streptomycin and the corresponding resistance gene aadA. The constructs remained in ptDNA for several months after introduction even under non-selective condition. The transformants normally flowered and are fertile in most cases. The offspring of the transformants (the T1 generation) retained the integrated construct DNA in their ptDNA, as indicated by PCR and DNA blotting, and expressed GFP in plastids from the integrated construct DNA. In summary, we successfully used the fusion peptide method for integration of foreign DNA in tobacco, rice, and kenaf ptDNA, and the integrated DNA was transmitted to the next generations. Whereas optimization is necessary to obtain homoplasmic plastid transformants that enable stable heterologous expression of genes, the plastid transformation method shown here is a novel nanomaterial-based approach distinct from the conventional methods, and we propose that this easy method could be used to target a wide variety of plants.</p
- …