10 research outputs found

    Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic Antiviral Host Defense against Varicella-Zoster Virus

    Get PDF
    The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins

    Targeting the Replication Initiator of the Second Vibrio Chromosome: Towards Generation of Vibrionaceae-Specific Antimicrobial Agents

    Get PDF
    The Vibrionaceae is comprised of numerous aquatic species and includes several human pathogens, such as Vibrio cholerae, the cause of cholera. All organisms in this family have two chromosomes, and replication of the smaller one depends on rctB, a gene that is restricted to the Vibrionaceae. Given the increasing prevalence of multi-drug resistance in pathogenic vibrios, there is a need for new targets and drugs to combat these pathogens. Here, we carried out a high throughput cell-based screen to find small molecule inhibitors of RctB. We identified a compound that blocked growth of an E. coli strain bearing an rctB-dependent plasmid but did not influence growth of E. coli lacking this plasmid. This compound, designated vibrepin, had potent cidal activity against V. cholerae and inhibited the growth of all vibrio species tested. Vibrepin blocked RctB oriCII unwinding, apparently by promoting formation of large non-functional RctB complexes. Although vibrepin also appears to have targets other than RctB, our findings suggest that RctB is an attractive target for generation of novel antibiotics that only block growth of vibrios. Vibrio-specific agents, unlike antibiotics currently used in clinical practice, will not engender resistance in the normal human flora or in non-vibrio environmental microorganisms

    Enabling political legitimacy and conceptual integration for climate change adaptation research within an agricultural bureaucracy: a systemic inquiry

    Get PDF
    The value of using systems approaches, for situations framed as ‘super wicked’, is examined from the perspective of research managers and stakeholders in a state-based climate change adaptation (CCA) program (CliChAP). Polycentric drivers influencing the development of CCA research pre-2010 in Victoria, Australia are reflected on, using Soft Systems Methodology (SSM) to generate a boundary critique of CCA research as a human activity system. We experienced the complexity of purpose with research practices pulling in different directions, reflected on the appropriateness of agricultural bureaucracies’ historical new public management (NPM) practices, and focused on realigning management theory with emerging demands for adaptation research skills and capability. Our analysis conceptualised CliChAP as a subsystem, generating novelty in a wider system, concerned with socio-ecological co-evolution. Constraining/enabling conditions at the time dealing with political legitimacy and conceptual integration were observed as potential catalysts for innovation in research management towards better handling of uncertainty as a social process using systemic thinking in practice (StiP)

    Environmental sensing and response genes in cnidaria : the chemical defensome in the sea anemone Nematostella vectensis

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Cell Biology and Toxicology 24 (2008): 483-502, doi:10.1007/s10565-008-9107-5.The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here I describe the genetic components of a ‘chemical defensome’ in the genome of N. vectensis, and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a ‘chemical defensome,’ and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria, and allow us to further illuminate the evolution of chemical defense gene networks.WHOI Ocean Life Institute and NIH R01-ES01591

    Enzyme Handbook

    No full text

    Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects

    No full text

    Pharmaceuticals

    No full text
    corecore