22 research outputs found

    Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct) OPeration (DROP-trial)

    Get PDF
    BACKGROUND: Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct) tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to improve the general condition and thus reduce postoperative morbidity and mortality. Early studies showed a reduction in morbidity. However, more recently the focus has shifted towards the negative effects of drainage, such as an increase of infectious complications. Whether biliary drainage should always be performed in jaundiced patients remains controversial. The randomized controlled multicenter DROP-trial (DRainage vs. Operation) was conceived to compare the outcome of a 'preoperative biliary drainage strategy' (standard strategy) with that of an 'early-surgery' strategy, with respect to the incidence of severe complications (primary-outcome measure), hospital stay, number of invasive diagnostic tests, costs, and quality of life. METHODS/DESIGN: Patients with obstructive jaundice due to a periampullary tumor, eligible for exploration after staging with CT scan, and scheduled to undergo a "curative" resection, will be randomized to either "early surgical treatment" (within one week) or "preoperative biliary drainage" (for 4 weeks) and subsequent surgical treatment (standard treatment). Primary outcome measure is the percentage of severe complications up to 90 days after surgery. The sample size calculation is based on the equivalence design for the primary outcome measure. If equivalence is found, the comparison of the secondary outcomes will be essential in selecting the preferred strategy. Based on a 40% complication rate for early surgical treatment and 48% for preoperative drainage, equivalence is taken to be demonstrated if the percentage of severe complications with early surgical treatment is not more than 10% higher compared to standard treatment: preoperative biliary drainage. Accounting for a 10% dropout, 105 patients are needed in each arm resulting in a study population of 210 (alpha = 0.95, beta = 0.8). DISCUSSION: The DROP-trial is a randomized controlled multicenter trial that will provide evidence whether or not preoperative biliary drainage is to be performed in patients with obstructive jaundice due to a periampullary tumor

    Long-Term Gene Therapy Causes Transgene-Specific Changes in the Morphology of Regenerating Retinal Ganglion Cells

    Get PDF
    Recombinant adeno-associated viral (rAAV) vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs) after long-term transduction with rAAV2 encoding: (i) green fluorescent protein (GFP), or (ii) bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43). To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5–8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG). Live retinal wholemounts were prepared and GFP positive (transduced) or GFP negative (non-transduced) RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured adult neurons. Such changes will likely alter the functional properties of neurons and may need to be considered when designing vector-based protocols for the treatment of neurotrauma and neurodegeneration

    The Influence of Myers-Briggs Type Indicator Profiles on Team Development Processes An Empirical Study in the Manufacturing Industry

    No full text
    The Myers-Briggs Type Indicator (MBTI) is one of the most common personality assessments and a frequently used instrument for team development. However, in relation to team development processes, there is little research and literature on the role of personality in general and the usefulness of MBTI in particular. This article starts with a review of the MBTI and explores the relationship between MBTI profiles and team processes using a sample of 1,630 people working in 156 teams in a Swedish industrial organization. The results show that only a small number of MBTI personality profiles have a significant relationship with team processes. Overall, the composition of teams in terms of MBTI profiles does not seem to predict team development very well. Findings suggest that the MBTI may be used as an instrument for personal development and as a vehicle for group members to gain a better understanding of each other

    Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals

    No full text
    Muscle-type carnitine palmitoyltransferase I (M-CPT 1) is a key enzyme in the control of beta-oxidation of long-chain fatty acids in the heart and skeletal muscle. Because knowledge of the mammalian genes encoding M-CPT I may aid in studies of disturbed energy metabolism, we obtained new genomic and cDNA data for M-CPT I for the human, mouse, rat, and sheep. The introns of these compact genes are 80% (mouse versus rat) and 60% (mouse versus human) identical. Sheep and goat, but not cow, pig, rodent, or human promoter sequences contain a short interspersed repeated sequence (SINE) upstream of highly conserved regulatory elements. These elements constitute two promoters in humans, sheep, and mice, and, contrary to previous reports, there is a second promoter in rats as well. Thus, the transcriptional organization of these genes is more uniform than previously supposed, with interspecies differences in. the 5'-ends of the mRNAs reflecting differences in splicing-, only in humans extensive splicing and splice variation is found in the 5% and W-untranslated regions. In the mouse, intron retention was detected in heart, muscle, and testes and may indicate an additional mechanism of regulation of M-CPT I expression. Splice variation in the coding region was previously proposed to lead to expression of CPT I enzymes with altered malonyl-CoA sensitivity (Yu, G. S., Lu, Y. C., and Gulick, T. (1998) Biochem. J. 334,225-231). However, when expressed in the yeast Pichia pastoris, none of three earlier described splice variants had CPT I activity. Therefore, the involvement of splice variation of M-CPT I in the modulation of malonyl-CoA inhibition of fatty acid oxidation may be less relevant than hitherto assumed
    corecore