78 research outputs found

    Fly ash as a pre-filter material for the retention of lead ions

    No full text
    Clay liners have been widely used to contain toxic and hazardous waste materials. Clays absorb contaminant cations due to their exchange capacity. To improve the performance of the clay liner, fly ash, a waste material arising from the combustion of coal has been studied as a pre-filter material. In particular, the retention of lead by two different fly ashes was studied. The influence of pH on retention as well as leaching characteristics are also examined. The results obtained from the retention experiments by the permeameter method indicate that fly ash retains the lead ions through precipitation in the pores as well as onto the surface when the ambient pH value is more than 5.5, and through adsorption when the pH value is less than 5.5. It has been observed that fly ash did not release the retained lead ions when the pH value is between 3.5 and 10.0. Hence, the retention of lead ions by fly ash is likely to be permanent since the pH of most of the municipal landfill leachates are within 3.7 to 8.8. However, for highly acidic or alkaline leachates, the retained ions can get released

    Fly ash characterization with reference to geotechnical applications

    No full text
    Thermal power stations use pulverized coal as fuel. They produce enormous quantities of coal ash as a by-product of combustion. This calls for the development of strategies to encourage and establish technological concepts which will ensure consumption of fly ash in bulk. Among the various uses of fly ash, its bulk utilization is possible only in geotechnical engineering applications. This necessitates characterization of the fly ash with reference to geotechnical applications. This paper presents a review of such studies carried out. The results show that fly ash is a freely draining material with angle of internal friction of more than 30 degrees. The specific gravity is lower leading to lower unit weights resulting in lower earth pressures. It can be summarized that fly ash (with some modifications/additives, if required) can be effectively utilized in geotechnical applications

    Critical Reappraisal of Colloidal Activity of Clays

    No full text
    Soil properties and their behavior, apart from stress history, are influenced markedly by physicochemical characteristics of the constituent clay and nonclay minerals and their relative proportions. Atterberg limits and Skempton’s colloidal activity, which are simple quantitative parameters, reflect the composite effects of the soil constituents and their interactions with pore fluid. Micromechanistic interpretations of these parameters have been provided in this paper. It has been shown that, in general, the liquid limit of fine-grained soils reflects the physicochemical potential and that each of the factors of Skempton’s colloidal activity are interdependent. It has been illustrated that property correlations with colloidal activity, as well as with Atterberg limits, result in involved interrelationships due to the interdependence of the parameters

    Critical Reappraisal of Colloidal Activity of Clays

    No full text
    Soil properties and their behavior, apart from stress history, are influence markedly by physicochemical characteristics of the constituent clay and nonclay minerals and their relative proportions. Atterberg limits and Skempton's colloidal activity, which are simple quantitative parameters, reflect the composite effects of the soil constituents and their interactions with pore fluid. Micromechanistic interpretations of these parameters have been provided in this paper. It has been shown that, in general, the liquid limit of fine-grained soils reflects the physicochemical potential and that each of the factors of Skempton's colloidal activity are interdependent. It has been illustrated that property correlations with colloidal activity, as well as with Atterberg limits, result in involved interrelationships due to the interdependence of the parameters

    California bearing ratio behavior of cement-stabilized fly ash-soil mixes

    No full text
    Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results

    Leaching Behavior of Indian Fly Ahes by an Oedometer Method

    No full text
    Thermal power stations use pulverized coal as fuel, producing enormous quantities of ash as a by-product of combustion. Currently, with very low utilization of the ash produced, the ash deposits at the thermal power stations are increasing rapidly. The disposal problem is expected to become alarming due to the limited space available for ash disposal near most thermal power stations. Among the various applications available for the use of fly ash, geotechnical application offers opportunity for its bulk utilization. However, the possibility of ground and surface water contamination due to the leaching of toxic elements present in the fly ash needs to be addressed. This paper describes a study carried out on two Indian fly ashes. It is found that pH is the controlling factor in the leaching behavior of fly ashes

    The Pozzolanic Effect of Fly Ash on the California Bearing Ratio Behavior of Black Cotton Soil

    No full text
    Thermal power stations that use pulverized coal as fuel generate large quantities of fly ash, resulting in environmental and disposal problems. Increasing demand for power leads to a greater use of coal and hence a further increase in the quantity of fly ash. These problems can be solved if the fly ash is put to use in an environmentally friendly way. Among the various uses for fly ash, the most massive and effective use is in geotechnical engineering applications. The study of fly ash and its interaction with soil is a must towards this goal. In the present investigation, an attempt has been made to study the engineering properties of fly ash—black cotton (BC) soil mixes with special reference to their use as sub-base materials in pavement construction. The study aims to understand the effect of fly ash on the California bearing ratio (CBR) of BC soil. The CBR variation is observed to depend upon the particle size distribution and pozzolanic nature of fly ash. The study indicates that addition of fly ash increases the CBR of BC soil significantly

    Permeability and consolidation behavior of fly ashes

    No full text
    A knowledge of permeability and consolidation is essential in a number of engineering problems such as settlement, seepage, and stability of the structures. Since fly ash is used very widely for several geotechnical applications, there is a need to understand its permeability and consolidation behavior. This paper presents a detailed study conducted on two Indian fly ashes. It brings out the role of chemical composition (free lime) on the permeability and consolidation behavior of fly ashes. It is found that the permeability values computed based on grain-size distribution agree well with those obtained based on test data

    Permeability and Compressibility Behavior of Bentonite-Sand/Soil Mixes

    No full text
    As a seepage barrier slurry trench material should have a relatively low coefficient of permeability, in the range of 10(-7) cm/s, and at the same time should be compatible with surrounding material with regard to compressibility. Although bentonite-sand/soil mixes are used widely, there is no specific engineering approach to proportion these mixes that satisfies the above practical requirements. In this paper, a generalized approach is presented for predicting the permeability and compressibility characteristics of mixes with minimum input parameters. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. It is possible to proportion a mix to arrive at the required compressibility without affecting the permeability. This is explained using an illustrative example
    corecore