7 research outputs found

    Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors

    Get PDF
    The development of a new family of implantable bioinspired materials is a focal point of bone tissue engineering. Implant surfaces that better mimic the natural bone extracellular matrix, a naturally nano-composite tissue, can stimulate stem cell differentiation towards osteogenic lineages in the absence of specific chemical treatments. Herein we describe a bioactive composite nanofibrous scaffold, composed of poly-caprolactone (PCL) and nano-sized hydroxyapatite (HA) or beta-tricalcium phosphate (TCP), which was able to support the growth of human bone marrow mesenchymal stem cells (hMSCs) and guide their osteogenic differentiation at the same time. Morphological and physical/chemical investigations were carried out by scanning, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, mechanical and wettability analysis. Upon culturing hMSCs on composite nanofibers, we found that the incorporation of either HA or TCP into the PCL nanofibers did not affect cell viability, meanwhile the presence of the mineral phase increases the activity of alkaline phosphatase (ALP), an early marker of bone formation, and mRNA expression levels of osteoblast-related genes, such as the Runt-related transcription factor 2 (Runx-2) and bone sialoprotein (BSP), in total absence of osteogenic supplements. These results suggest that both the nanofibrous structure and the chemical composition of the scaffolds play a role in regulating the osteogenic differentiation of hMSCs

    Pathophysiology and Genetics of Bronchiectasis Unrelated to Cystic Fibrosis

    No full text
    Bronchiectasis is characterized by deregulated inflammatory response and recurrent bacterial infection resulting in progressive lung damage and an irreversible dilatation of bronchi and bronchioles. Generally accepted model of the development of bronchiectasis is the "vicious cycle hypothesis" that proposes compromising of the mucociliary clearance by an initial event, which leads to the infection of the respiratory tract followed by further impairment of mucociliary function, bacterial proliferation, and more inflammation. Bronchiectasis is a very common symptom in patients with cystic fibrosis (CF), while bronchiectasis unrelated to CF is heterogeneous pathology of unknown cause with a large number of potential contributory factors and poorly understood pathogenesis. It is presumed that bronchiectasis unrelated to CF is a multifactorial condition predisposed by genetic factors. Different molecules have been implicated in the onset and development of idiopathic bronchiectasis, as well as modulation of the disease severity and response to therapy. Most of these molecules are involved in the processes that contribute to the homeostasis of the lung tissue, especially mucociliary clearance, protease-antiprotease balance, and immunomodulation. Evaluation of the studies performed towards investigation of the role these molecules play in bronchiectasis identifies genetic variants that may be of potential importance for clinical management of the disease, and also of interest for future research efforts. This review focuses on the molecules with major roles in lung homeostasis and their involvement in bronchiectasis unrelated to CF

    Filamentous Fungi for Production of Food Additives and Processing Aids

    No full text
    corecore