4,254 research outputs found

    Feasibility study of mooring lines design for a floating tidal turbine platform using double hull structure

    Get PDF
    The aim of this paper is to study the mooring tension characteristics on a tidal energy converter (TIC) platform considering i) a horizontal and ii) a vertical tidal turbine. The study examines numerically the feasibility of a catenary mooring line for a modular tidal energy platform. A modular platform is designed and modelled with two floating hulls and anchored by studlink catenary mooring chains on the seabed. Vertical and horizontal axis turbines which have similar Cp are selected and modelled separately. The effect of those turbines on the mooring system are compared and the results informs lifetime of the mooring component for each turbine connection. The hydrodynamic model with no turbine is firstly developed and validated against an experiment with 1:12 scale ratio. The starboard fore mooring line tension, platform surge and pitch displacements are validated against the experiment. The model results show identical signal frequency with slightly different magnitude from the experiment. The mooring tension under vertical and horizontal tidal turbine operations in the particular environment is further examined. The result shows that the mooring line using selected vertical axis turbine experiences higher tension. For platform motions, the horizontal turbine generates slightly larger displacement in surge. However the pitch motion record shows equal displacement under both turbine operations. The selected vertical axis tidal turbine also produces longer lifetime mooring components

    Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

    Get PDF
    Background The cardiovascular effect of liraglutide, a glucagon-like peptide 1 analogue, when added to standard care in patients with type 2 diabetes, remains unknown. Methods In this double-blind trial, we randomly assigned patients with type 2 diabetes and high cardiovascular risk to receive liraglutide or placebo. The primary composite outcome in the time-to-event analysis was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The primary hypothesis was that liraglutide would be noninferior to placebo with regard to the primary outcome, with a margin of 1.30 for the upper boundary of the 95% confidence interval of the hazard ratio. No adjustments for multiplicity were performed for the prespecified exploratory outcomes. Results A total of 9340 patients underwent randomization. The median follow-up was 3.8 years. The primary outcome occurred in significantly fewer patients in the liraglutide group (608 of 4668 patients [13.0%]) than in the placebo group (694 of 4672 [14.9%]) (hazard ratio, 0.87; 95% confidence interval [CI], 0.78 to 0.97; P<0.001 for noninferiority; P=0.01 for superiority). Fewer patients died from cardiovascular causes in the liraglutide group (219 patients [4.7%]) than in the placebo group (278 [6.0%]) (hazard ratio, 0.78; 95% CI, 0.66 to 0.93; P=0.007). The rate of death from any cause was lower in the liraglutide group (381 patients [8.2%]) than in the placebo group (447 [9.6%]) (hazard ratio, 0.85; 95% CI, 0.74 to 0.97; P=0.02). The rates of nonfatal myocardial infarction, nonfatal stroke, and hospitalization for heart failure were nonsignificantly lower in the liraglutide group than in the placebo group. The most common adverse events leading to the discontinuation of liraglutide were gastrointestinal events. The incidence of pancreatitis was nonsignificantly lower in the liraglutide group than in the placebo group. Conclusions In the time-to-event analysis, the rate of the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke among patients with type 2 diabetes mellitus was lower with liraglutide than with placebo. (Funded by Novo Nordisk and the National Institutes of Health; LEADER ClinicalTrials.gov number, NCT01179048 .)

    Simulating Dynamical Features of Escape Panic

    Get PDF
    One of the most disastrous forms of collective human behaviour is the kind of crowd stampede induced by panic, often leading to fatalities as people are crushed or trampled. Sometimes this behaviour is triggered in life-threatening situations such as fires in crowded buildings; at other times, stampedes can arise from the rush for seats or seemingly without causes. Tragic examples within recent months include the panics in Harare, Zimbabwe, and at the Roskilde rock concert in Denmark. Although engineers are finding ways to alleviate the scale of such disasters, their frequency seems to be increasing with the number and size of mass events. Yet, systematic studies of panic behaviour, and quantitative theories capable of predicting such crowd dynamics, are rare. Here we show that simulations based on a model of pedestrian behaviour can provide valuable insights into the mechanisms of and preconditions for panic and jamming by incoordination. Our results suggest practical ways of minimising the harmful consequences of such events and the existence of an optimal escape strategy, corresponding to a suitable mixture of individualistic and collective behaviour.Comment: For related information see http://angel.elte.hu/~panic, http://www.helbing.org, http://angel.elte.hu/~fij, and http://angel.elte.hu/~vicse

    Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP

    Get PDF
    Linear ubiquitin chains are important regulators of cellular signaling pathways that control innate immunity and inflammation through NF-κB activation and protection against TNFα-induced apoptosis(1-5). They are synthesized by HOIP, which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multi-subunit E3 ligase(6). RBR family members act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 subsequently forms a thioester intermediate with the transferred or “donor” ubiquitin(7). Here we report the crystal structure of the catalytic core of HOIP in its apo form and in complex with ubiquitin. The C-terminal portion of HOIP adopts a novel fold that, together with a zinc finger, forms an ubiquitin-binding platform which orients the acceptor ubiquitin and positions its α-amino group for nucleophilic attack on the E3~ubiquitin thioester. The carboxy-terminal tail of a second ubiquitin molecule is located in close proximity to the catalytic cysteine providing a unique snapshot of the ubiquitin transfer complex containing both donor and acceptor ubiquitin. These interactions are required for activation of the NF-kB pathway in vivo and explain the determinants of linear ubiquitin chain specificity by LUBAC
    • …
    corecore