6 research outputs found

    Alteration-weakening leading to localized deformation in a damage aureole adjacent to a dormant shear zone

    Get PDF
    Deformation adjacent to faults and shear zones is traditionally thought to correlate with slip. Inherited structures may control damage geometry, localizing fluid flow and deformation in a damage aureole around structures, even after displacement has ceased. In this paper we document a post-shearing anastomosing foliation and fracture network that developed to one side of the Mesoarchean Marmion Shear Zone. This fracture network hosts the low-grade, disseminated Hammond Reef gold deposit. The shear zone juxtaposed a greenstone belt against tonalite gneiss and was locked by an intrusion that was emplaced during the final stages of suturing. After cessation of activity, fluids channeled along fault- and intrusion-related fractures led to the pervasive sericitization of feldspars. Foliated zones resulted from flattening in the weaker sericite-rich tonalite during progressive alteration without any change in the regional NW-SE shortening direction. The anastomosing pattern may have been inherited from an earlier ductile fabric, but sericite alteration and flattening fabrics all formed post-shearing. Thus, the apparent foliated fracture network adjacent to the Marmion Shear Zone is a second-order effect of shear-related damage, distinct in time from shear activity, adjacent to an effectively dormant shear zone. This phenomenon has implications for understanding the relative timing of fault zone activity, alteration and (in this case) gold mineralization related to long-term fault zone permeability

    Laser-preparation of geometrically optimised samples for X-ray nano-CT

    Get PDF
    A robust and versatile sample preparation technique for the fabrication of cylindrical pillars for imaging by X-ray nano-computed tomography (nano-CT) is presented. The procedure employs simple, cost-effective laser micro-machining coupled with focused-ion beam (FIB) milling, when required, to yield mechanically robust samples at the micrometre length-scale to match the field-of-view (FOV) for nano-CT imaging. A variety of energy and geological materials are exhibited as case studies, demonstrating the procedure can be applied to a variety of materials to provide geometrically optimised samples whose size and shape are tailored to the attenuation coefficients of the constituent phases. The procedure can be implemented for the bespoke preparation of pillars for both lab- and synchrotron-based X-ray nano-CT investigations of a wide range of samples
    corecore