188 research outputs found
Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature
Heterostructures of oxides have been widely investigated in optical, catalytic and electrochemical applications, because the heterostructured interfaces exhibit pronouncedly different transport, charge, and reactivity characteristics compared to the bulk of the oxides. Here we fabricated a three-dimensional (3D) heterostructured electrode with a concentration gradient shell. The concentration gradient shell with the composition of Ba0.5-xSr0.5-yCo0.8Fe0.2O3-δ (BSCF-D) was prepared by simply treating porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) backbone with microwave-plasma. Electrochemical impedance spectroscopy reveals that the oxygen surface exchange rate of the BSCF-D is enhanced by ~250% that of the pristine BSCF due to the appearance of the shell. The heterostructured electrode shows an interfacial resistance as low as 0.148 Ω cm2 at 550°C and an unchanged electrochemical performance after heating treatment for 200 h. This method offers potential to prepare heterostructured oxides not only for electrochemical devices but also for many other applications that use ceramic materials
Live to cheat another day: bacterial dormancy facilitates the social exploitation of beta-lactamases
The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours
Trajectory of vitamin D status during pregnancy in relation to neonatal birth size and fetal survival: a prospective cohort study
Background: We investigated the associations between vitamin D status in early and late pregnancy with neonatal small for gestational age (SGA), low birth weight (LBW) and preterm delivery. Furthermore, associations between vitamin D status and pregnancy loss were studied. Methods: Serum 25-hydroxyvitamin D (25OHD) was sampled in gestational week ≤ 16 (trimester 1 (T1), N = 2046) and > 31 (trimester 3 (T3), N = 1816) and analysed using liquid chromatography tandem mass spectrometry. Pregnant women were recruited at antenatal clinics in south-west Sweden at latitude 57–58°N. Gestational and neonatal data were retrieved from medical records. Multiple gestations and terminated pregnancies were excluded from the analyses. SGA was defined as weight and/or length at birth < 2 SD of the population mean and LBW as < 2500 g. Preterm delivery was defined as delivery < 37 + 0 gestational weeks and pregnancy loss as spontaneous abortion or intrauterine fetal death. Associations between neonatal outcomes and 25OHD at T1, T3 and change in 25OHD (T3-T1) were studied using logistic regression. Results: T1 25OHD was negatively associated with pregnancy loss and 1 nmol/L increase in 25OHD was associated with 1% lower odds of pregnancy loss (OR 0.99, p = 0.046). T3 25OHD ≥ 100 nmol/L (equal to 40 ng/ml) was associated with lower odds of SGA (OR 0.3, p = 0.031) and LBW (OR 0.2, p = 0.046), compared to vitamin D deficiency (25OHD < 30 nmol/L, or 12 ng/ml). Women with a ≥ 30 nmol/L increment in 25OHD from T1 to T3 had the lowest odds of SGA, LBW and preterm delivery. Conclusions: Vitamin D deficiency in late pregnancy was associated with higher odds of SGA and LBW. Lower 25OHD in early pregnancy was only associated with pregnancy loss. Vitamin D status trajectory from early to late pregnancy was inversely associated with SGA, LBW and preterm delivery with the lowest odds among women with the highest increment in 25OHD. Thus, both higher vitamin D status in late pregnancy and gestational vitamin D status trajectory can be suspected to play a role in healthy pregnancy
CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction
A novel electrocatalyst support material, nitrogendoped carbon (CNx)-modified Fe3O4 (Fe3O4-CNx), was synthesized through carbonizing a polypyrrole-Fe3O4 hybridized precursor. Subsequently, Fe3O4-CNx-supported Pt (Pt/Fe3O4-CNx) nanocomposites were prepared by reducing Pt precursor in ethylene glycol solution and evaluated for the oxygen reduction reaction (ORR). The Pt/Fe3O4-CNx catalysts were characterized by X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electrocatalytic activity and stability of the as-prepared electrocatalysts toward ORR were studied by cyclic voltammetry and steady-state polarization measurements. The results showed that Pt/ Fe3O4-CNx catalysts exhibited superior catalytic performance for ORR to the conventional Pt/C and Pt/C-CNx catalysts.Web of Scienc
Ceramic sonotrodes for light alloy melt treatment
Alloy melt treatment by ultrasonic vibration is a physical processing technique that has been gathering the support of the scientific community. The use of metallic sonotrodes for this purpose has been proven very efficient; however, it promotes melt inclusion by sonotrode erosion. Such an issue is being addressed by the use of ceramic sonotrodes in low-amplitude resonance. Given that these novel sonotrodes generally have complex shapes and low displacements, this study shows an innovative approach for their characterization. Based on scanning laser Doppler vibrometry, the signal processing Python-based script was used to map the overall resonant behavior of a tubular SiAlON sonotrode, and this route is able to characterize the complex shapes in low-amplitude and high-frequency radial resonance in resonant ceramic sonotrodes. Velocity time-domain profiles are shown to be dependent on the position, and even though the radial natural frequencies of ceramic sonotrodes have low amplitudes, they are proposed as an efficient tool for melt treatment. While characterizing the radial natural mode in ceramic sonotrodes, this study proves that their low-amplitude Lamb waves are responsible for the refinement of a-grains and secondary phases in light alloys.This work was supported by PTDC/EMEEME/30967/
2017 and NORTE-0145-FEDER-030967, co-financed
by the European Regional Development Fund (ERDF),
through the Operational Programme for Competitive ness and Internationalization (COMPETE 2020), under
Portugal 2020, and by the Fundação para a Cência e a
Tecnologia – FCT I.P. national funds. Also, this work
was supported by Portuguese FCT, under the reference
project UIDB/04436/2020, and Stimulus of Scientific
Employment Application CEECIND/03991/2017
Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri
The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V.fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V.fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell
A stable genetic polymorphism underpinning microbial syntrophy
Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities
Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress
A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components
- …