9 research outputs found

    Presynaptic External Calcium Signaling Involves the Calcium-Sensing Receptor in Neocortical Nerve Terminals

    Get PDF
    Nerve terminal invasion by an axonal spike activates voltage-gated channels, triggering calcium entry, vesicle fusion, and release of neurotransmitter. Ion channels activated at the terminal shape the presynaptic spike and so regulate the magnitude and duration of calcium entry. Consequently characterization of the functional properties of ion channels at nerve terminals is crucial to understand the regulation of transmitter release. Direct recordings from small neocortical nerve terminals have revealed that external [Ca(2+)] ([Ca(2+)](o)) indirectly regulates a non-selective cation channel (NSCC) in neocortical nerve terminals via an unknown [Ca(2+)](o) sensor. Here, we identify the first component in a presynaptic calcium signaling pathway.By combining genetic and pharmacological approaches with direct patch-clamp recordings from small acutely isolated neocortical nerve terminals we identify the extracellular calcium sensor. Our results show that the calcium-sensing receptor (CaSR), a previously identified G-protein coupled receptor that is the mainstay in serum calcium homeostasis, is the extracellular calcium sensor in these acutely dissociated nerve terminals. The NSCC currents from reduced function mutant CaSR mice were less sensitive to changes in [Ca(2+)](o) than wild-type. Calindol, an allosteric CaSR agonist, reduced NSCC currents in direct terminal recordings in a dose-dependent and reversible manner. In contrast, glutamate and GABA did not affect the NSCC currents.Our experiments identify CaSR as the first component in the [Ca(2+)](o) sensor-NSCC signaling pathway in neocortical terminals. Decreases in [Ca(2+)](o) will depress synaptic transmission because of the exquisite sensitivity of transmitter release to [Ca(2+)](o) following its entry via voltage-activated Ca(2+) channels. CaSR may detects such falls in [Ca(2+)](o) and increase action potential duration by increasing NSCC activity, thereby attenuating the impact of decreases in [Ca(2+)](o) on release probability. CaSR is positioned to detect the dynamic changes of [Ca(2+)](o) and provide presynaptic feedback that will alter brain excitability

    Coactivation of multiple tightly coupled calcium channels triggers spontaneous release of GABA

    No full text
    Voltage-activated Ca(2+) channels (VACCs) mediate Ca(2+) influx to trigger action potential-evoked neurotransmitter release but the mechanism by which Ca(2+) regulates spontaneous transmission is unclear. Here we show VACCs are the major physiological triggers for spontaneous release at murine neocortical inhibitory synapses. Moreover, despite the absence of a synchronizing action potential, we find that spontaneous fusion of a GABA-containing vesicle requires the activation of multiple tightly-coupled VACCs of variable type

    Monitoring intracellular nanomolar calcium using fluorescence lifetime imaging

    No full text
    Nanomolar-range fluctuations of intracellular [Ca2+] are critical for brain cell function but remain difficult to measure. We have advanced a microscopy technique to monitor intracellular [Ca2+] in individual cells in acute brain slices (also applicable in vivo) using fluorescence lifetime imaging (FLIM) of the Ca2+-sensitive fluorescent indicator Oregon Green BAPTA1 (OGB-1). The OGB-1 fluorescence lifetime is sensitive to [Ca2+] within the 10-500 nM range but not to other factors such as viscosity, temperature, or pH. This protocol describes the requirements, setup, and calibration of the FLIM system required for OGB-1 imaging. We provide a step-by-step procedure for whole-cell OGB-1 loading and two-photon FLIM. We also describe how to analyze the obtained FLIM data using total photon count and gated-intensity record, a ratiometric photon-counting approach that provides a highly improved signal-to-noise ratio and greater sensitivity of absolute [Ca2+] readout. We demonstrate our technique in nerve cells in situ, and it is adaptable to other cell types and fluorescent indicators. This protocol requires a basic understanding of FLIM and experience in single-cell electrophysiology and cell imaging. Setting up the FLIM system takes ∼2 d, and OGB-1 loading, imaging, and data analysis take 2 d

    Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels

    No full text
    The role of voltage-gated Ca2+ channels (VGCCs) in spontaneous miniature neurotransmitter release is incompletely understood. We found that stochastic opening of P/Q-, N- and R-type VGCCs accounts for ~50% of all spontaneous glutamate release at rat cultured hippocampal synapses, and that R-type channels have a far greater role in spontaneous than in action potential–evoked exocytosis. VGCC-dependent miniature neurotransmitter release (minis) showed similar sensitivity to presynaptic Ca2+ chelation as evoked release, arguing for direct triggering of spontaneous release by transient spatially localized Ca2+ domains. Experimentally constrained three-dimensional diffusion modeling of Ca2+ influx–exocytosis coupling was consistent with clustered distribution of VGCCs in the active zone of small hippocampal synapses and revealed that spontaneous VGCCs openings can account for the experimentally observed VGCC-dependent minis, although single channel openings triggered release with low probability. Uncorrelated stochastic VGCC opening is therefore a major trigger for spontaneous glutamate release, with differential roles for distinct channel subtypes

    Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding

    No full text
    corecore