72 research outputs found

    Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By revealing historical and present plant use, ethnobotany contributes to drug discovery and socioeconomic development. Nepal is a natural storehouse of medicinal plants. Although several ethnobotanical studies were conducted in the country, many areas remain unexplored. Furthermore, few studies have compared indigenous plant use with reported phytochemical and pharmacological properties.</p> <p>Methods</p> <p>Ethnopharmacological data was collected in the Rasuwa district of Central Nepal by conducting interviews and focus group discussions with local people. The informant consensus factor (F<sub>IC</sub>) was calculated in order to estimate use variability of medicinal plants. Bio-efficacy was assessed by comparing indigenous plant use with phytochemical and pharmacological properties determined from a review of the available literature. Criteria were used to identify high priority medicinal plant species.</p> <p>Results</p> <p>A total of 60 medicinal formulations from 56 plant species were documented. Medicinal plants were used to treat various diseases and disorders, with the highest number of species being used for gastro-intestinal problems, followed by fever and headache. Herbs were the primary source of medicinal plants (57% of the species), followed by trees (23%). The average F<sub>IC</sub> value for all ailment categories was 0.82, indicating a high level of informant agreement compared to similar studies conducted elsewhere. High F<sub>IC </sub>values were obtained for ophthalmological problems, tooth ache, kidney problems, and menstrual disorders, indicating that the species traditionally used to treat these ailments are worth searching for bioactive compounds: <it>Astilbe rivularis</it>, <it>Berberis asiatica</it>, <it>Hippophae salicifolia, Juniperus recurva</it>, and <it>Swertia multicaulis</it>. A 90% correspondence was found between local plant use and reported plant chemical composition and pharmacological properties for the 30 species for which information was available. Sixteen medicinal plants were ranked as priority species, 13 of which having also been prioritized in a country-wide governmental classification.</p> <p>Conclusions</p> <p>The <it>Tamang </it>people possess rich ethnopharmacological knowledge. This study allowed to identify many high value and high priority medicinal plant species, indicating high potential for economic development through sustainable collection and trade.</p

    Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bladder cancer is the sixth most common cancer in the world and the incidence is particularly high in southwestern Taiwan. Previous studies have identified several tumor-related genes that are hypermethylated in bladder cancer; however the DNA methylation profile of bladder cancer in Taiwan is not fully understood.</p> <p>Methods</p> <p>In this study, we compared the DNA methylation profile of multiple tumor suppressor genes (<it>APC</it>, <it>DAPK</it>, <it>E-cadherin</it>, <it>hMLH1</it>, <it>IRF8</it>, <it>p14</it>, <it>p15</it>, <it>RASSF1A</it>, <it>SFRP1 </it>and <it>SOCS-1</it>) in bladder cancer patients from different Chinese sub-populations including Taiwan (104 cases), Hong Kong (82 cases) and China (24 cases) by MSP. Two normal human urothelium were also included as control. To investigate the diagnostic potential of using DNA methylation in non-invasive detection of bladder cancer, degree of methylation of <it>DAPK</it>, <it>IRF8</it>, <it>p14</it>, <it>RASSF1A </it>and <it>SFRP1 </it>was also accessed by quantitative MSP in urine samples from thirty bladder cancer patients and nineteen non-cancer controls.</p> <p>Results</p> <p>There were distinct DNA methylation epigenotypes among the different sub-populations. Further, samples from Taiwan and China demonstrated a bimodal distribution suggesting that CpG island methylator phentotype (CIMP) is presented in bladder cancer. Moreover, the number of methylated genes in samples from Taiwan and Hong Kong were significantly correlated with histological grade (P < 0.01) and pathological stage (P < 0.01). Regarding the samples from Taiwan, methylation of <it>SFRP1</it>, <it>IRF8</it>, <it>APC </it>and <it>RASSF1A </it>were significantly associated with increased tumor grade, stage. Methylation of <it>RASSF1A </it>was associated with tumor recurrence. Patients with methylation of <it>APC </it>or <it>RASSF1A </it>were also significantly associated with shorter recurrence-free survival. For methylation detection in voided urine samples of cancer patients, the sensitivity and specificity of using any of the methylated genes (<it>IRF8</it>, <it>p14 </it>or <it>sFRP1</it>) by qMSP was 86.7% and 94.7%.</p> <p>Conclusions</p> <p>Our results indicate that there are distinct methylation epigenotypes among different Chinese sub-populations. These profiles demonstrate gradual increases with cancer progression. Finally, detection of gene methylation in voided urine with these distinct DNA methylation markers is more sensitive than urine cytology.</p

    The Making of a Monster: Postnatal Ontogenetic Changes in Craniomandibular Shape in the Great Sabercat Smilodon

    Get PDF
    Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial ontogenetic changes than among extant felids, resulting in greatly modified adult craniomandibular morphologies

    The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    Get PDF
    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Superior Inhibitory Control and Resistance to Mental Fatigue in Professional Road Cyclists

    Get PDF
    Purpose: Given the important role of the brain in regulating endurance performance, this comparative study sought to determine whether professional road cyclists have superior inhibitory control and resistance to mental fatigue compared to recreational road cyclists. Methods: After preliminary testing and familiarization, eleven professional and nine recreational road cyclists visited the lab on two occasions to complete a modified incongruent colour-word Stroop task (a cognitive task requiring inhibitory control) for 30 min (mental exertion condition), or an easy cognitive task for 10 min (control condition) in a randomized, counterbalanced cross-over order. After each cognitive task, participants completed a 20-min time trial on a cycle ergometer. During the time trial, heart rate, blood lactate concentration, and rating of perceived exertion (RPE) were recorded. Results: The professional cyclists completed more correct responses during the Stroop task than the recreational cyclists (705±68 vs 576±74, p = 0.001). During the time trial, the recreational cyclists produced a lower mean power output in the mental exertion condition compared to the control condition (216±33 vs 226±25 W, p = 0.014). There was no difference between conditions for the professional cyclists (323±42 vs 326±35 W, p = 0.502). Heart rate, blood lactate concentration, and RPE were not significantly different between the mental exertion and control conditions in both groups. Conclusion: The professional cyclists exhibited superior performance during the Stroop task which is indicative of stronger inhibitory control than the recreational cyclists. The professional cyclists also displayed a greater resistance to the negative effects of mental fatigue as demonstrated by no significant differences in perception of effort and time trial performance between the mental exertion and control conditions. These findings suggest that inhibitory control and resistance to mental fatigue may contribute to successful road cycling performance. These psychobiological characteristics may be either genetic and/or developed through the training and lifestyle of professional road cyclists

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore