10,071 research outputs found
Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As
We report single-color, time resolved magneto-optical measurements in
ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control
of the magnetization precession by applying two successive ultrashort laser
pulses. The magnetic field and temperature dependent experiments reveal the
collective Mn-moment nature of the oscillatory part of the time-dependent Kerr
rotation, as well as contributions to the magneto-optical signal that are not
connected with the magnetization dynamics.Comment: 6 pages, 3 figures, accepted in Applied Physics Letter
Laser-induced Precession of Magnetization in GaMnAs
We report on the photo-induced precession of the ferromagnetically coupled Mn
spins in (Ga,Mn)As, which is observed even with no external magnetic field
applied. We concentrate on various experimental aspects of the time-resolved
magneto-optical Kerr effect (TR-MOKE) technique that can be used to clarify the
origin of the detected signals. We show that the measured data typically
consist of several different contributions, among which only the oscillatory
signal is directly connected with the ferromagnetic order in the sample.Comment: 4 pages, 5 figure
On spontaneous scalarization
We study in the physical frame the phenomenon of spontaneous scalarization
that occurs in scalar-tensor theories of gravity for compact objects. We
discuss the fact that the phenomenon occurs exactly in the regime where the
Newtonian analysis indicates it should not. Finally we discuss the way the
phenomenon depends on the equation of state used to describe the nuclear
matter.Comment: 41 pages, RevTex, 10 ps figures, submitted to Phys. Rev.
Canonical General Relativity on a Null Surface with Coordinate and Gauge Fixing
We use the canonical formalism developed together with David Robinson to st=
udy the Einstein equations on a null surface. Coordinate and gauge conditions =
are introduced to fix the triad and the coordinates on the null surface. Toget=
her with the previously found constraints, these form a sufficient number of
second class constraints so that the phase space is reduced to one pair of
canonically conjugate variables: \Ac_2\and\Sc^2. The formalism is related to
both the Bondi-Sachs and the Newman-Penrose methods of studying the
gravitational field at null infinity. Asymptotic solutions in the vicinity of
null infinity which exclude logarithmic behavior require the connection to fall
off like after the Minkowski limit. This, of course, gives the previous
results of Bondi-Sachs and Newman-Penrose. Introducing terms which fall off
more slowly leads to logarithmic behavior which leaves null infinity intact,
allows for meaningful gravitational radiation, but the peeling theorem does not
extend to in the terminology of Newman-Penrose. The conclusions are in
agreement with those of Chrusciel, MacCallum, and Singleton. This work was
begun as a preliminary study of a reduced phase space for quantization of
general relativity.Comment: magnification set; pagination improved; 20 pages, plain te
- …