669 research outputs found

    Fixed Points of the Dissipative Hofstadter Model

    Full text link
    The phase diagram of a dissipative particle in a periodic potential and a magnetic field is studied in the weak barrier limit and in the tight-biding regime. For the case of half flux per plaquette, and for a wide range of values of the dissipation, the physics of the model is determined by a non trivial fixed point. A combination of exact and variational results is used to characterize this fixed point. Finally, it is also argued that there is an intermediate energy scale that separates the weak coupling physics from the tight-binding solution.Comment: 4 pages 3 figure

    Historical Roots of Histrionic Personality Disorder

    Get PDF
    Histrionic Personality Disorder is one of the most ambiguous diagnostic categories in psychiatry. Hysteria is a classical term that includes a wide variety of psychopathological states. Ancient Egyptians and Greeks blamed a displaced womb, for many women's afflictions. Several researchers from the 18th and 19th centuries studied this theme, namely, Charcot who defined hysteria as a "neurosis" with an organic basis and Sigmund Freud who redefined "neurosis" as a re-experience of past psychological trauma. Histrionic personality disorder (HPD) made its first official appearance in the Diagnostic and Statistical Manual of Mental Disorders II (DSM-II) and since the DSM-III, HPD is the only disorder that kept the term derived from the old concept of hysteria. The subject of hysteria has reflected positions about health, religion and relationships between the sexes in the last 4000 years, and the discussion is likely to continue

    An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions

    Get PDF
    The rotor of a floating wind turbine is subject to complex aerodynamics due to changes in relative wind speeds at the blades and potential local interactions between blade sections and the rotor near wake. These complex interactions are not yet fully understood. Lab-scale experiments are highly relevant for capturing these phenomena and provide means for the validation of numerical design tools. This paper presents a new wind tunnel experimental setup able to study the aerodynamic response of a wind turbine rotor when subjected to prescribed motions. The present study uses a 1:148 scale model of the DTU 10 MW reference wind turbine mounted on top of a 6 degrees of freedom parallel kinematic robotic platform. Firstly, the thrust variation of the turbine is investigated when single degree of freedom harmonic motions are imposed by the platform, with surge, pitch and yaw being considered in this study. For reduced frequencies greater than 1.2, it is found that the thrust variation is amplified by up to 150 % compared to the quasi-steady value when the turbine is subject to pitch and surge motions, regardless of the amplitude of motion. A similar behaviour is also noticed under yaw motions. Secondly, realistic 6 degrees of freedom motions are imposed by the platform. The motions are derived from FAST simulations performed on the full-scale turbine coupled with the TripleSpar floater, and the tests aim at exploring the thrust force dynamics for different sea states and wind conditions, obtaining reasonable agreement with the simulations. Finally, the work shows the capabilities of an off-the-shelf hexapod to conduct hybrid testing of floating offshore wind turbines in wind tunnels, as well as its limitations in performing such tests.</p

    Properties of magnetic nanodots with perpendicular anisotropy

    Full text link
    Nanodots with magnetic vortices have many potential applications, such as magnetic memories (VRAMs) and spin transfer nano-oscillators (STNOs). Adding a perpendicular anisotropy term to the magnetic energy of the nanodot it becomes possible to tune the vortex core properties. This can be obtained, e.g., in Co nanodots by varying the thickness of the Co layer in a Co/Pt stack. Here we discuss the spin configuration of circular and elliptical nanodots for different perpendicular anisotropies; we show for nanodisks that micromagnetic simulations and analytical results agree. Increasing the perpendicular anisotropy, the vortex core radii increase, the phase diagrams are modified and new configurations appear; the knowledge of these phase diagrams is relevant for the choice of optimum nanodot dimensions for applications. MFM measurements on Co/Pt multilayers confirm the trend of the vortex core diameters with varying Co layer thicknesses.Comment: 7 pages, 8 figure
    corecore