15 research outputs found

    High-resolution TEM characterization of ZnO core-shell nanowires for dye-sensitized solar cells

    No full text
    Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120°C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO2 and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement. © 2010 IOP Publishing Ltd

    High-resolution TEM characterization of ZnO core-shell nanowires for dye-sensitized solar cells

    No full text
    Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120°C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO2 and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement. © 2010 IOP Publishing Ltd

    Efficient ZnO Nanowire Solid-State Dye-Sensitized Solar Cells Using Organic Dyes and Core-shell Nanostructures

    No full text
    We have applied a MgO and a ZrO2 shell deposition method to control the interface between two indolenebased organic dyes in solid-state dye-sensitized solar cells. The shell deposition was carried out at less than 100 °C, and shell thickness was shown to be 2 nm for the ZrO2 and 6-10 nm for the MgO by transmission electron microscopy. X-ray photoelectron spectroscopy has shown the initial ZnO NWs and core-shell structures have little surface water contamination. The use of suitable dyes, D102 and D149, has led to power conversion efficiency for ZnO NW based hybrid solar cells of 0.71%. Transient absorption measurements indicate that enhancements in photoinduced charge generation with core-shell formation are the main factor leading to the improved device efficiency. © 2009 American Chemical Society
    corecore