280 research outputs found

    Organocatalizzatori e liquidi ionici supportati: nuovi materiali in sintesi organica

    Get PDF
    Nell’ultimo decennio l’organocatalisi e i liquidi ionici hanno rappresentato due campi di grande interesse scientifico. Gli organocatalizzatori hanno trovato particolare impiego in sintesi enantioselettive conducendo a prodotti finali con alte rese e selettività. I liquidi ionici sono stati estensivamente utilizzati come solventi alternativi e, opportunamente modificati, come catalizzatori o loro supporti. Uno sviluppo attuale che accomuna questi due campi di ricerca consiste nella possibilità di immobilizzazione di organocatalizzatori e liquidi ionici per trasformarli in materiali riciclabili con ampie capacità di utilizzo in chimica organica. Negli ultimi anni, il nostro gruppo di ricerca si è occupato di organocatalizzatori e liquidi ionici supportati. E’ stata sviluppata una metodologia sintetica per l’ancoraggio di organocatalizzatori su resine polistireniche attraverso una reazione tiolo-ene, permettendo di ottenere un largo numero di materiali catalitici che sono stati impiegati in reazioni aldoliche, di -selenenilazione e di Michael (Figura 1).1-2 Nel campo dei liquidi ionici supportati (SILP) ci siamo occupati del loro uso nel campo delle reazioni catalizzate da metalli che in organocatalisi. Inoltre, i SILP sono stati efficacemente impiegati in reazioni di apertura di epossidi in CO2 supercritica per fornire carbonati ciclici.3-4 In questo campo abbiamo sviluppato due tipi di materiali, monostrato e multistrato (Figura 2)

    Halloysite nanotubes: a green resource for materials and life sciences

    Get PDF
    Clay minerals are considered one of the materials of the 20th century for their peculiar physico-chemical features. Among them, halloysite nanotubes (HNTs) are an emerging nanomaterial with a particular tubular structure that makes them a low cost and valuable alternative to the most common carbon nanotubes. Due to their tubular morphology, HNTs are employed in several fields acting as nanocontainers for different compounds for applications in drug carrier and delivery fields, catalysis, and as filler for polymeric matrices. The modification of HNTs’ surfaces allows to the synthesis of different nanoarchitectures that can improve the mechanical and thermal performance of polymer as well as they can enhance the use for the loading and release of chemicals. In this review, we summarize our recent results on halloysite functionalization, both supramolecular and covalent, and the application aforementioned fields

    The Gelling Ability of Some Diimidazolium Salts: Effect of Isomeric Substitution of the Cation and Anion

    Get PDF
    The gelling ability of some geminal imidazolium salts was investigated both in organic solvents and in water solution. Organic salts differing either in the cation or anion structure were taken into account. In particular, the effects on the gelphase formation of isomeric substitution on the cation or anion as well as of the use of mono- or dianions were evaluated. As far as the cation structure is concerned, isomeric cations, such as 3,3’-di-n-octyl-1,1’-(1,4-phenylenedimethylene)diimidazolium and 3,3’-di-n-octyl-1,1’-(1,3-phenylenedimethylene) diimidazolium, were used. On the other hand, in addition to the bromide anion, isomeric dianions, such as the 1,5- and 2,6-naphthalenedisulfonate anions, were also examined. After preliminary gelation tests, different factors affecting the obtained gel phases, such as the nature of the solvent, organogelator concentrations, and action of external stimuli, were analyzed. The gel-phase formation was also studied as a function of time, by using resonance light scattering measurements. Gel morphologies were analyzed by scanning electron microscopy. To further support the understanding of the different behavior shown by the isomeric cations, some representative ion pairs were analyzed by DFT-based investigations. The collected data underline the significant role played by isomeric substitution of both cation and anion structures in determining the gelling capability of the investigated salts, as well as the properties of the gel phases. Finally, DFT investigations were helpful in the identification of the structural features affecting the self-assembly

    A competitive reactivity study on the oxidative cyclization of thiosemicarbazones into 1,3,4-thiadiazolidines

    Get PDF
    Abstract In order to obtain useful insights on the mechanism of formation of 2(3H)-imino-1,3,4-thiadiazoles by oxidative cyclization of aldehyde thiosemicarbazones with Cu(II) or Fe(III) salts, a competitive reactivity study was performed on a suitable set of diversely substituted substrates, by means of HPLC techniques. This approach enabled to exploit Hammett\u2019s equation without performing otherwise difficult-to-run kinetic experiments. The results presented herein support the hypothesis that the formation of the thiadiazole ring is induced by the attack of the oxidizing Lewis acid metal cation onto the imine-like nitrogen atom of the thiosemicarbazone substrate. Beyond mechanistic interpretation, the paper particularly focuses onto the methodological issues implied

    New simple hydrophobic proline derivatives as highly active and stereoselective catalysts for the direct asymmetric aldol reaction in aqueous medium

    Get PDF
    New 4-substituted acyloxyproline derivatives with different hydrophobic properties of the acyl group were easily synthesized and used as catalysts in the direct asymmetric aldol reaction between cyclic ketones (cyclohexanone and cyclopentanone) and several substituted benzaldehydes. Reactions were carried out using water, this being the best reaction medium examined. Screening of these catalysts showed that compounds bearing the most hydrophobic acyl chains [4-phenylbutanoate and 4-(pyren-1-yl)butanoate] provided better results. The latter catalysts were successfully used in only 2 mol% at room temperature without additives to give aldol products in excellent stereoselectivities. These results demonstrate that derivatization of the proline moiety with the proper simple hydrophobic substituent in the 4-position can furnish highly active and stereoselective catalysts without the need of additional chiral backbones in the molecule. Finally, an explanation of the observed stereoselectivities in the presence of water is provided
    • …
    corecore