7 research outputs found

    A Deep Learning approach for monitoring severe rainfall in urban catchments using consumer cameras. Models development and deployment on a case study in Matera (Italy) Un approccio basato sul Deep Learning per monitorare le piogge intense nei bacini urbani utilizzando fotocamere generiche. Sviluppo e implementazione di modelli su un caso di studio a Matera (Italia)

    Get PDF
    In the last 50 years, flooding has figured as the most frequent and widespread natural disaster globally. Extreme precipitation events stemming from climate change could alter the hydro-geological regime resulting in increased flood risk. Near real-time precipitation monitoring at local scale is essential for flood risk mitigation in urban and suburban areas, due to their high vulnerability. Presently, most of the rainfall data is obtained from ground‐based measurements or remote sensing that provide limited information in terms of temporal or spatial resolution. Other problems may be due to the high costs. Furthermore, rain gauges are unevenly spread and usually placed away from urban centers. In this context, a big potential is represented by the use of innovative techniques to develop low-cost monitoring systems. Despite the diversity of purposes, methods and epistemological fields, the literature on the visual effects of the rain supports the idea of camera-based rain sensors but tends to be device-specific. The present thesis aims to investigate the use of easily available photographing devices as rain detectors-gauges to develop a dense network of low-cost rainfall sensors to support the traditional methods with an expeditious solution embeddable into smart devices. As opposed to existing works, the study focuses on maximizing the number of image sources (like smartphones, general-purpose surveillance cameras, dashboard cameras, webcams, digital cameras, etc.). This encompasses cases where it is not possible to adjust the camera parameters or obtain shots in timelines or videos. Using a Deep Learning approach, the rainfall characterization can be achieved through the analysis of the perceptual aspects that determine whether and how a photograph represents a rainy condition. The first scenario of interest for the supervised learning was a binary classification; the binary output (presence or absence of rain) allows the detection of the presence of precipitation: the cameras act as rain detectors. Similarly, the second scenario of interest was a multi-class classification; the multi-class output described a range of quasi-instantaneous rainfall intensity: the cameras act as rain estimators. Using Transfer Learning with Convolutional Neural Networks, the developed models were compiled, trained, validated, and tested. The preparation of the classifiers included the preparation of a suitable dataset encompassing unconstrained verisimilar settings: open data, several data owned by National Research Institute for Earth Science and Disaster Prevention - NIED (dashboard cameras in Japan coupled with high precision multi-parameter radar data), and experimental activities conducted in the NIED Large Scale Rainfall Simulator. The outcomes were applied to a real-world scenario, with the experimentation through a pre-existent surveillance camera using 5G connectivity provided by Telecom Italia S.p.A. in the city of Matera (Italy). Analysis unfolded on several levels providing an overview of generic issues relating to the urban flood risk paradigm and specific territorial questions inherent with the case study. These include the context aspects, the important role of rainfall from driving the millennial urban evolution to determining present criticality, and components of a Web prototype for flood risk communication at local scale. The results and the model deployment raise the possibility that low‐cost technologies and local capacities can help to retrieve rainfall information for flood early warning systems based on the identification of a significant meteorological state. The binary model reached accuracy and F1 score values of 85.28% and 0.86 for the test, and 83.35% and 0.82 for the deployment. The multi-class model reached test average accuracy and macro-averaged F1 score values of 77.71% and 0.73 for the 6-way classifier, and 78.05% and 0.81 for the 5-class. The best performances were obtained in heavy rainfall and no-rain conditions, whereas the mispredictions are related to less severe precipitation. The proposed method has limited operational requirements, can be easily and quickly implemented in real use cases, exploiting pre-existent devices with a parsimonious use of economic and computational resources. The classification can be performed on single photographs taken in disparate conditions by commonly used acquisition devices, i.e. by static or moving cameras without adjusted parameters. This approach is especially useful in urban areas where measurement methods such as rain gauges encounter installation difficulties or operational limitations or in contexts where there is no availability of remote sensing data. The system does not suit scenes that are also misleading for human visual perception. The approximations inherent in the output are acknowledged. Additional data may be gathered to address gaps that are apparent and improve the accuracy of the precipitation intensity prediction. Future research might explore the integration with further experiments and crowdsourced data, to promote communication, participation, and dialogue among stakeholders and to increase public awareness, emergency response, and civic engagement through the smart community idea.Negli ultimi 50 anni, le alluvioni si sono confermate come il disastro naturale più frequente e diffuso a livello globale. Tra gli impatti degli eventi meteorologici estremi, conseguenti ai cambiamenti climatici, rientrano le alterazioni del regime idrogeologico con conseguente incremento del rischio alluvionale. Il monitoraggio delle precipitazioni in tempo quasi reale su scala locale è essenziale per la mitigazione del rischio di alluvione in ambito urbano e periurbano, aree connotate da un'elevata vulnerabilità. Attualmente, la maggior parte dei dati sulle precipitazioni è ottenuta da misurazioni a terra o telerilevamento che forniscono informazioni limitate in termini di risoluzione temporale o spaziale. Ulteriori problemi possono derivare dagli elevati costi. Inoltre i pluviometri sono distribuiti in modo non uniforme e spesso posizionati piuttosto lontano dai centri urbani, comportando criticità e discontinuità nel monitoraggio. In questo contesto, un grande potenziale è rappresentato dall'utilizzo di tecniche innovative per sviluppare sistemi inediti di monitoraggio a basso costo. Nonostante la diversità di scopi, metodi e campi epistemologici, la letteratura sugli effetti visivi della pioggia supporta l'idea di sensori di pioggia basati su telecamera, ma tende ad essere specifica per dispositivo scelto. La presente tesi punta a indagare l'uso di dispositivi fotografici facilmente reperibili come rilevatori-misuratori di pioggia, per sviluppare una fitta rete di sensori a basso costo a supporto dei metodi tradizionali con una soluzione rapida incorporabile in dispositivi intelligenti. A differenza dei lavori esistenti, lo studio si concentra sulla massimizzazione del numero di fonti di immagini (smartphone, telecamere di sorveglianza generiche, telecamere da cruscotto, webcam, telecamere digitali, ecc.). Ciò comprende casi in cui non sia possibile regolare i parametri fotografici o ottenere scatti in timeline o video. Utilizzando un approccio di Deep Learning, la caratterizzazione delle precipitazioni può essere ottenuta attraverso l'analisi degli aspetti percettivi che determinano se e come una fotografia rappresenti una condizione di pioggia. Il primo scenario di interesse per l'apprendimento supervisionato è una classificazione binaria; l'output binario (presenza o assenza di pioggia) consente la rilevazione della presenza di precipitazione: gli apparecchi fotografici fungono da rivelatori di pioggia. Analogamente, il secondo scenario di interesse è una classificazione multi-classe; l'output multi-classe descrive un intervallo di intensità delle precipitazioni quasi istantanee: le fotocamere fungono da misuratori di pioggia. Utilizzando tecniche di Transfer Learning con reti neurali convoluzionali, i modelli sviluppati sono stati compilati, addestrati, convalidati e testati. La preparazione dei classificatori ha incluso la preparazione di un set di dati adeguato con impostazioni verosimili e non vincolate: dati aperti, diversi dati di proprietà del National Research Institute for Earth Science and Disaster Prevention - NIED (telecamere dashboard in Giappone accoppiate con dati radar multiparametrici ad alta precisione) e attività sperimentali condotte nel simulatore di pioggia su larga scala del NIED. I risultati sono stati applicati a uno scenario reale, con la sperimentazione attraverso una telecamera di sorveglianza preesistente che utilizza la connettività 5G fornita da Telecom Italia S.p.A. nella città di Matera (Italia). L'analisi si è svolta su più livelli, fornendo una panoramica sulle questioni relative al paradigma del rischio di alluvione in ambito urbano e questioni territoriali specifiche inerenti al caso di studio. Queste ultime includono diversi aspetti del contesto, l'importante ruolo delle piogge dal guidare l'evoluzione millenaria della morfologia urbana alla determinazione delle criticità attuali, oltre ad alcune componenti di un prototipo Web per la comunicazione del rischio alluvionale su scala locale. I risultati ottenuti e l'implementazione del modello corroborano la possibilità che le tecnologie a basso costo e le capacità locali possano aiutare a caratterizzare la forzante pluviometrica a supporto dei sistemi di allerta precoce basati sull'identificazione di uno stato meteorologico significativo. Il modello binario ha raggiunto un'accuratezza e un F1-score di 85,28% e 0,86 per il set di test e di 83,35% e 0,82 per l'implementazione nel caso di studio. Il modello multi-classe ha raggiunto un'accuratezza media e F1-score medio (macro-average) di 77,71% e 0,73 per il classificatore a 6 vie e 78,05% e 0,81 per quello a 5 classi. Le prestazioni migliori sono state ottenute nelle classi relative a forti precipitazioni e assenza di pioggia, mentre le previsioni errate sono legate a precipitazioni meno estreme. Il metodo proposto richiede requisiti operativi limitati, può essere implementato facilmente e rapidamente in casi d'uso reali, sfruttando dispositivi preesistenti con un uso parsimonioso di risorse economiche e computazionali. La classificazione può essere eseguita su singole fotografie scattate in condizioni disparate da dispositivi di acquisizione di uso comune, ovvero da telecamere statiche o in movimento senza regolazione dei parametri. Questo approccio potrebbe essere particolarmente utile nelle aree urbane in cui i metodi di misurazione come i pluviometri incontrano difficoltà di installazione o limitazioni operative o in contesti in cui non sono disponibili dati di telerilevamento o radar. Il sistema non si adatta a scene che sono fuorvianti anche per la percezione visiva umana. I limiti attuali risiedono nelle approssimazioni intrinseche negli output. Per colmare le lacune evidenti e migliorare l'accuratezza della previsione dell'intensità di precipitazione, sarebbe possibile un'ulteriore raccolta di dati. Sviluppi futuri potrebbero riguardare l'integrazione con ulteriori esperimenti in campo e dati da crowdsourcing, per promuovere comunicazione, partecipazione e dialogo aumentando la resilienza attraverso consapevolezza pubblica e impegno civico in una concezione di comunità smart

    Comparing Three Machine Learning Techniques for Building Extraction from a Digital Surface Model

    No full text
    Automatic building extraction from high-resolution remotely sensed data is a major area of interest for an extensive range of fields (e.g., urban planning, environmental risk management) but challenging due to urban morphology complexity. Among the different methods proposed, the approaches based on supervised machine learning (ML) achieve the best results. This paper aims to investigate building footprint extraction using only high-resolution raster digital surface model (DSM) data by comparing the performance of three different popular supervised ML models on a benchmark dataset. The first two methods rely on a histogram of oriented gradients (HOG) feature descriptor and a classical ML (support vector machine (SVM)) or a shallow neural network (extreme learning machine (ELM)) classifier, and the third model is a fully convolutional network (FCN) based on deep learning with transfer learning. Used data were obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and cover the urban areas of Vaihingen an der Enz, Potsdam, and Toronto. The results indicated that performances of models based on shallow ML (feature extraction and classifier training) are affected by the urban context investigated (F1 scores from 0.49 to 0.81), whereas the FCN-based model proved to be the most robust and best-performing method for building extraction from a high-resolution raster DSM (F1 scores from 0.80 to 0.86)

    A Collaborative Virtual Walkthrough of Matera’s Sassi Using Photogrammetric Reconstruction and Hand Gesture Navigation

    No full text
    The COVID-19 pandemic has underscored the need for real-time, collaborative virtual tools to support remote activities across various domains, including education and cultural heritage. Virtual walkthroughs provide a potent means of exploring, learning about, and interacting with historical sites worldwide. Nonetheless, creating realistic and user-friendly applications poses a significant challenge. This study investigates the potential of collaborative virtual walkthroughs as an educational tool for cultural heritage sites, with a focus on the Sassi of Matera, a UNESCO World Heritage Site in Italy. The virtual walkthrough application, developed using RealityCapture and Unreal Engine, leveraged photogrammetric reconstruction and deep learning-based hand gesture recognition to offer an immersive and accessible experience, allowing users to interact with the virtual environment using intuitive gestures. A test with 36 participants resulted in positive feedback regarding the application’s effectiveness, intuitiveness, and user-friendliness. The findings suggest that virtual walkthroughs can provide precise representations of complex historical locations, promoting tangible and intangible aspects of heritage. Future work should focus on expanding the reconstructed site, enhancing the performance, and assessing the impact on learning outcomes. Overall, this study highlights the potential of virtual walkthrough applications as a valuable resource for architecture, cultural heritage, and environmental education

    Opportunistic Rainfall Monitoring from Single Pictures Using Artificial Intelligence

    No full text
    Urban flood risk mitigation requires fine-scale near-real-time precipitation observations that are challenging to obtain from traditional monitoring networks. Novel data and computational techniques offer a valuable potential source of information. This study explores an unprecedented, device-independent, artificial intelligence-based system for opportunistic rainfall monitoring through deep learning models that detect rainfall presence and estimate quasi-instantaneous intensity from single pictures. Preliminary results demonstrate the models’ ability to detect a significant meteorological state corroborating the potential of non-dedicated sensors for hydrometeorological monitoring in urban areas and data-scarce regions. Future research will involve further experiments and crowdsourcing, to improve accuracy and promote public resilience

    Comparing Three Machine Learning Techniques for Building Extraction from a Digital Surface Model

    No full text
    Automatic building extraction from high-resolution remotely sensed data is a major area of interest for an extensive range of fields (e.g., urban planning, environmental risk management) but challenging due to urban morphology complexity. Among the different methods proposed, the approaches based on supervised machine learning (ML) achieve the best results. This paper aims to investigate building footprint extraction using only high-resolution raster digital surface model (DSM) data by comparing the performance of three different popular supervised ML models on a benchmark dataset. The first two methods rely on a histogram of oriented gradients (HOG) feature descriptor and a classical ML (support vector machine (SVM)) or a shallow neural network (extreme learning machine (ELM)) classifier, and the third model is a fully convolutional network (FCN) based on deep learning with transfer learning. Used data were obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and cover the urban areas of Vaihingen an der Enz, Potsdam, and Toronto. The results indicated that performances of models based on shallow ML (feature extraction and classifier training) are affected by the urban context investigated (F1 scores from 0.49 to 0.81), whereas the FCN-based model proved to be the most robust and best-performing method for building extraction from a high-resolution raster DSM (F1 scores from 0.80 to 0.86)

    Opportunistic Rainfall Monitoring from Single Pictures Using Artificial Intelligence

    No full text
    Urban flood risk mitigation requires fine-scale near-real-time precipitation observations that are challenging to obtain from traditional monitoring networks. Novel data and computational techniques offer a valuable potential source of information. This study explores an unprecedented, device-independent, artificial intelligence-based system for opportunistic rainfall monitoring through deep learning models that detect rainfall presence and estimate quasi-instantaneous intensity from single pictures. Preliminary results demonstrate the models’ ability to detect a significant meteorological state corroborating the potential of non-dedicated sensors for hydrometeorological monitoring in urban areas and data-scarce regions. Future research will involve further experiments and crowdsourcing, to improve accuracy and promote public resilience

    Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images

    No full text
    Near real-time rainfall monitoring at local scale is essential for urban flood risk mitigation. Previous research on precipitation visual effects supports the idea of vision-based rain sensors, but tends to be device-specific. We aimed to use different available photographing devices to develop a dense network of low-cost sensors. Using Transfer Learning with a Convolutional Neural Network, the rainfall detection was performed on single images taken in heterogeneous conditions by static or moving cameras without adjusted parameters. The chosen images encompass unconstrained verisimilar settings of the sources: Image2Weather dataset, dash-cams in the Tokyo Metropolitan area and experiments in the NIED Large-scale Rainfall Simulator. The model reached a test accuracy of 85.28% and an F1 score of 0.86. The applicability to real-world scenarios was proven with the experimentation with a pre-existing surveillance camera in Matera (Italy), obtaining an accuracy of 85.13% and an F1 score of 0.85. This model can be easily integrated into warning systems to automatically monitor the onset and end of rain-related events, exploiting pre-existing devices with a parsimonious use of economic and computational resources. The limitation is intrinsic to the outputs (detection without measurement). Future work concerns the development of a CNN based on the proposed methodology to quantify the precipitation intensity
    corecore