60 research outputs found

    Some matrix nearness problems suggested by Tikhonov regularization

    Full text link
    The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size are Tikhonov regularization and truncated singular value decomposition (TSVD). By considering matrix nearness problems related to Tikhonov regularization, several novel regularization methods are derived. These methods share properties with both Tikhonov regularization and TSVD, and can give approximate solutions of higher quality than either one of these methods

    The structured distance to singularity of a symmetric tridiagonal Toeplitz matrix

    Full text link
    This paper is concerned with the distance of a symmetric tridiagonal Toeplitz matrix TT to the variety of similarly structured singular matrices, and with determining the closest matrix to TT in this variety. Explicit formulas are presented, that exploit the analysis of the sensitivity of the spectrum of TT with respect to structure-preserving perturbations of its entries.Comment: 16 pages, 5 Figure

    Fractional regularization matrices for linear discrete ill-posed problems

    Get PDF
    The numerical solution of linear discrete ill-posed problems typically requires regularization. Two of the most popular regularization methods are due to Tikhonov and Lavrentiev. These methods require the choice of a regularization matrix. Common choices include the identity matrix and finite difference approximations of a derivative operator. It is the purpose of the present paper to explore the use of fractional powers of the matrices {Mathematical expression} (for Tikhonov regularization) and A (for Lavrentiev regularization) as regularization matrices, where A is the matrix that defines the linear discrete ill-posed problem. Both small- and large-scale problems are considered. © 2013 Springer Science+Business Media Dordrecht

    Arnoldi decomposition, GMRES, and preconditioning for linear discrete ill-posed problems

    Get PDF
    GMRES is one of the most popular iterative methods for the solution of large linear systems of equations that arise from the discretization of linear well-posed problems, such as boundary value problems for elliptic partial differential equations. The method is also applied to the iterative solution of linear systems of equations that are obtained by discretizing linear ill-posed problems, such as many inverse problems. However, GMRES does not always perform well when applied to the latter kind of problems. This paper seeks to shed some light on reasons for the poor performance of GMRES in certain situations, and discusses some remedies based on specific kinds of preconditioning. The standard implementation of GMRES is based on the Arnoldi process, which also can be used to define a solution subspace for Tikhonov or TSVD regularization, giving rise to the Arnoldi–Tikhonov and Arnoldi-TSVD methods, respectively. The performance of the GMRES, the Arnoldi–Tikhonov, and the Arnoldi-TSVD methods is discussed. Numerical examples illustrate properties of these methods

    Computing the structured pseudospectrum of a Toeplitz matrix and its extreme points

    Full text link
    The computation of the structured pseudospectral abscissa and radius (with respect to the Frobenius norm) of a Toeplitz matrix is discussed and two algorithms based on a low rank property to construct extremal perturbations are presented. The algorithms are inspired by those considered in [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192] for the unstructured case, but their extension to structured pseudospectra and analysis presents several difficulties. Natural generalizations of the algorithms, allowing to draw significant sections of the structured pseudospectra in proximity of extremal points are also discussed. Since no algorithms are available in the literature to draw such structured pseudospectra, the approach we present seems promising to extend existing software tools (Eigtool, Seigtool) to structured pseudospectra representation for Toeplitz matrices. We discuss local convergence properties of the algorithms and show some applications to a few illustrative examples.Comment: 21 pages, 11 figure

    A tensor formalism for multilayer network centrality measures using the Einstein product

    Full text link
    Complex systems that consist of different kinds of entities that interact in different ways can be modeled by multilayer networks. This paper uses the tensor formalism with the Einstein tensor product to model this type of networks. Several centrality measures, that are well known for single-layer networks, are extended to multilayer networks using tensors and their properties are investigated. In particular, subgraph centrality based on the exponential and resolvent of a tensor are considered. Krylov subspace methods are introduced for computing approximations of different measures for large multilayer networks.Comment: 28 pages, 4 figure
    • …
    corecore