13,274 research outputs found

    Coupled charge and valley excitations in graphene quantum Hall ferromagnets

    Full text link
    Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-type low-energy spectrum. In a strong magnetic field, where Coulomb interactions dominate against disorder broadening, quantum Hall ferromagnetic states realize at integer fillings. Extending the quantum Hall ferromagnetism to the fractional filling case of massless Dirac fermions, we study the elementally charge excitations which couple with the valley degrees of freedom (so-called valley skyrmions). With the use of the density matrix renomalization group (DMRG) method, the excitation gaps are calculated and extrapolated to the thermodynamic limit. These results exhibit numerical evidences and criterions of the skyrmion excitations in graphene.Comment: 5 pages, 5 figure

    Correlation functions for time-dependent calculation of linear-response functions

    Full text link
    We emphasize the importance of choosing an appropriate correlation function to reduce numerical errors in calculating the linear-response function as a Fourier transformation of a time-dependent correlation function. As an example we take dielectric functions of silicon crystal calculated with a time-dependent method proposed by Iitaka et al. [Phys. Rev. E 56, 1222 (1997)].Comment: to be published in Phys.Rev.E 01 Dec 1997, 2 pages, 4 figures, more information at http://espero.riken.go.jp

    Ground-State Phase Diagram of the XXZ Model on a Railroad-Trestle Lattice with Asymmetric Leg Interactions

    Full text link
    Using the bosonization and level spectroscopy methods, we study the ground-state phase diagram of a XXZ antiferromagnet on a railroad-trestle lattice with asymmetric leg interactions. It is shown that the asymmetry does not change the dimer/Neel transition line significantly, which agrees with the expectation based on a naive bosonization procedure, but it does change the dimer/spin-fluid transition line. To understand this observation, we analyze eigenvectors of the ground state, dimer excitation, doublet excitation and Neel excitation, and find that only the doublet excitation is affected by the asymmetric interaction.Comment: 6 pages, 11 Postscript figures, use jpsj2.cl

    Evidence for the Multiverse in the Standard Model and Beyond

    Full text link
    In any theory it is unnatural if the observed parameters lie very close to special values that determine the existence of complex structures necessary for observers. A naturalness probability, P, is introduced to numerically evaluate the unnaturalness. If P is small in all known theories, there is an observer naturalness problem. In addition to the well-known case of the cosmological constant, we argue that nuclear stability and electroweak symmetry breaking (EWSB) represent significant observer naturalness problems. The naturalness probability associated with nuclear stability is conservatively estimated as P_nuc < 10^{-(3-2)}, and for simple EWSB theories P_EWSB < 10^{-(2-1)}. This pattern of unnaturalness in three different arenas, cosmology, nuclear physics, and EWSB, provides evidence for the multiverse. In the nuclear case the problem is largely solved even with a flat multiverse distribution, and with nontrivial distributions it is possible to understand both the proximity to neutron stability and the values of m_e and m_d - m_u in terms of the electromagnetic contribution to the proton mass. It is reasonable that multiverse distributions are strong functions of Lagrangian parameters due to their dependence on various factors. In any EWSB theory, strongly varying distributions typically lead to a little or large hierarchy, and in certain multiverses the size of the little hierarchy is enhanced by a loop factor. Since the correct theory of EWSB is unknown, our estimate for P_EWSB is theoretical. The LHC will determine P_EWSB more robustly, which may remove or strengthen the observer naturalness problem of EWSB. For each of the three arenas, the discovery of a natural theory would eliminate the evidence for the multiverse; but in the absence of such a theory, the multiverse provides a provisional understanding of the data.Comment: 79 pages, 23 figure
    • …
    corecore