24 research outputs found

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Adding content to contacts: measurement of high quality contacts for maternal and newborn health in Ethiopia, north east Nigeria, and Uttar Pradesh, India.

    Get PDF
    BACKGROUND: Families in high mortality settings need regular contact with high quality services, but existing population-based measurements of contacts do not reflect quality. To address this, in 2012, we designed linked household and frontline worker surveys for Gombe State, Nigeria, Ethiopia, and Uttar Pradesh, India. Using reported frequency and content of contacts, we present a method for estimating the population level coverage of high quality contacts. METHODS AND FINDINGS: Linked cluster-based household and frontline health worker surveys were performed. Interviews were conducted in 40, 80 and 80 clusters in Gombe, Ethiopia, and Uttar Pradesh, respectively, including 348, 533, and 604 eligible women and 20, 76, and 55 skilled birth attendants. High quality contacts were defined as contacts during which recommended set of processes for routine health care were met. In Gombe, 61% (95% confidence interval 50-72) of women had at least one antenatal contact, 22% (14-29) delivered with a skilled birth attendant, 7% (4-9) had a post-partum check and 4% (2-8) of newborns had a post-natal check. Coverage of high quality contacts was reduced to 11% (6-16), 8% (5-11), 0%, and 0% respectively. In Ethiopia, 56% (49-63) had at least one antenatal contact, 15% (11-22) delivered with a skilled birth attendant, 3% (2-6) had a post-partum check and 4% (2-6) of newborns had a post-natal check. Coverage of high quality contacts was 4% (2-6), 4% (2-6), 0%, and 0%, respectively. In Uttar Pradesh 74% (69-79) had at least one antenatal contact, 76% (71-80) delivered with a skilled birth attendant, 54% (48-59) had a post-partum check and 19% (15-23) of newborns had a post-natal check. Coverage of high quality contacts was 6% (4-8), 4% (2-6), 0%, and 0% respectively. CONCLUSIONS: Measuring content of care to reflect the quality of contacts can reveal missed opportunities to deliver best possible health care
    corecore