499 research outputs found
Design and synthesis of lactams derived from mucochloric and mucobromic acids as pseudomonas aeruginosa quorum sensing inhibitors
© 2018 by the authors. Bacterial infections, particularly hospital-acquired infections caused by Pseudomonas aeruginosa, have become a global threat with a high mortality rate. Gram-negative bacteria including P. aeruginosa employ N-acyl homoserine lactones (AHLs) as chemical signals to regulate the expression of pathogenic phenotypes through a mechanism called quorum sensing (QS). Recently, strategies targeting bacterial behaviour or QS have received great attention due to their ability to disarm rather than kill pathogenic bacteria, which lowers the evolutionary burden on bacteria and the risk of resistance development. In the present study, we report the design and synthesis of N-alkyl- and N-aryl 3,4 dichloro- and 3,4-dibromopyrrole-2-one derivatives through the reductive amination of mucochloric and mucobromic acid with aliphatic and aromatic amines. The quorum sensing inhibition (QSI) activity of the synthesized compounds was determined against a P. aeruginosa MH602 reporter strain. The phenolic compounds exhibited the best activity with 80% and 75% QSI at 250 µM and were comparable in activity to the positive control compound Fu-30. Computational docking studies performed using the LasR receptor protein of P. aeruginosa suggested the importance of hydrogen bonding and hydrophobic interactions for QSI
Experimental conditions affect the outcome of Plasmodium falciparum platelet-mediated clumping assays
<p>Abstract</p> <p>Background</p> <p>Platelet-mediated clumping of <it>Plasmodium falciparum</it>-infected erythrocytes (IE) is a parasite adhesion phenotype that has been associated with severe malaria in some, but not all, field isolate studies. A variety of experimental conditions have been used to study clumping <it>in vitro</it>, with substantial differences in parasitaemia (Pt), haematocrit (Ht), and time of reaction between studies. It is unknown whether these experimental variables affect the outcome of parasite clumping assays.</p> <p>Methods</p> <p>The effects of Pt (1, 4 and 12%), Ht (2, 5 and 10%) and time (15 min, 30 min, 1 h, 2 h) on the clumping of <it>P. falciparum </it>clone HB3 were examined. The effects of platelet freshness and parasite maturity were also studied.</p> <p>Results</p> <p>At low Ht (2%), the Pt of the culture has a large effect on clumping, with significantly higher clumping occurring at 12% Pt (mean 47% of IE in clumps) compared to 4% Pt (mean 26% IE in clumps) or 1% Pt (mean 7% IE in clumps) (ANOVA, p = 0.0004). Similarly, at low Pt (1%), the Ht of the culture has a large effect on clumping, with significantly higher clumping occurring at 10% Ht (mean 62% IE in clumps) compared to 5% Ht (mean 25% IE in clumps) or 2% Ht (mean 10% IE in clumps) (ANOVA, p = 0.0004). Combinations of high Ht and high Pt were impractical because of the difficulty assessing clumping in densely packed IE and the rapid formation of enormous clumps that could not be counted accurately. There was no significant difference in clumping when fresh platelets were used compared to platelets stored at 4°C for 10 days. Clumping was a property of mature pigmented-trophozoites and schizonts but not ring stage parasites.</p> <p>Conclusion</p> <p>The Pt and Ht at which <it>in vitro </it>clumping assays are set up have a profound effect on the outcome. All previous field isolate studies on clumping and malaria severity suffer from potential problems in experimental design and methodology. Future studies of clumping should use standardized conditions and control for Pt, and should take into account the limitations and variability inherent in the assay.</p
Intra- and inter-individual genetic differences in gene expression
Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.


A generic travelling wave solution in dissipative laser cavity
A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stability region is identified. Bifurcation analysis is done by smoothly varying the cavity loss coefficient to provide insight of the system dynamics. He’s variational method is adopted to obtain the standard sech-type and the notso-explored but promising cosh-Gaussian type, travelling wave solutions. For a given set of system parameters, only one sech solution is obtained, whereas several distinct solution points are derived for cosh-Gaussian case. These solutions yield a wide variety of travelling wave profiles, namely Gaussian, near-sech, flat-top and a cosh-Gaussianwith variable central dip. A split-step Fourier method and pseudospectral method have been used for direct numerical solution of the CGLE and travelling wave profiles identical to the analytical profiles have been obtained. We also identified the parametric zone that promises an extremely large family of cosh-Gaussian travelling wave solutions with tunable shape. This suggests that the cosh-Gaussian profile is quite generic and would be helpful for further theoretical as well as experimental investigation on pattern formation, pulse dynamics andlocalization in semiconductor laser cavity
Measures, Gaps, and Mitigation Strategies in Bangladesh’s COVID-19 Response
AbstractThe Coronavirus Disease 2019 (COVID-19) spread rapidly from China to most other countries around the world in early 2020 killing millions of people. To prevent virus spread, world governments implemented a variety of response measures. This paper’s objectives were to discuss the country’s adopted measures to combat the virus through June 2020, identify gaps in the measures’ effectiveness, and offer possible mitigations to those gaps. The measures taken included screening device deployment across international air and land ports, flight suspensions and closures from COVID-19 affected countries, and declaration and extension of a national public holiday (equivalent to lockdowns in other countries). Identified gaps were test kit, PPE, ICU beds, and ventilator shortages, limited public awareness, and insufficient coordination and collaboration among national and international partners. Proper and timely risk mapping, preparedness, communication, coordination, and collaboration among governments and organizations, and public awareness and engagement would have provided sufficient COVID-19 mitigation in Bangladesh. </jats:p
Research priorities to reduce the impact of COVID-19 in low- and middle-income countries
Background: The COVID-19 pandemic has caused disruptions to the functioning of societies and their health systems. Prior to the pandemic, health systems in low- and middle-income countries (LMIC) were particularly stretched and vulnerable. The International Society of Global Health (ISoGH) sought to systematically identify priorities for health research that would have the potential to reduce the impact of the COVID-19 pandemic in LMICs.
Methods: The Child Health and Nutrition Research Initiative (CHNRI) method was used to identify COVID-19-related research priorities. All ISoGH members were invited to participate. Seventy-nine experts in clinical, translational, and population research contributed 192 research questions for consideration. Fifty-two experts then scored those questions based on five pre-defined criteria that were selected for this exercise: 1) feasibility and answerability; 2) potential for burden reduction; 3) potential for a paradigm shift; 4) potential for translation and implementation; and 5) impact on equity.
Results: Among the top 10 research priorities, research questions related to vaccination were prominent: health care system access barriers to equitable uptake of COVID-19 vaccination (ranked 1st), determinants of vaccine hesitancy (4th), development and evaluation of effective interventions to decrease vaccine hesitancy (5th), and vaccination impacts on vulnerable population/s (6th). Health care delivery questions also ranked highly, including: effective strategies to manage COVID-19 globally and in LMICs (2nd) and integrating health care for COVID-19 with other essential health services in LMICs (3rd). Additionally, the assessment of COVID-19 patients’ needs in rural areas of LMICs was ranked 7th, and studying the leading socioeconomic determinants and consequences of the COVID-19 pandemic in LMICs using multi-faceted approaches was ranked 8th. The remaining questions in the top 10 were: clarifying paediatric case-fatality rates (CFR) in LMICs and identifying effective strategies for community engagement against COVID-19 in different LMIC contexts.
Interpretation: Health policy and systems research to inform COVID-19 vaccine uptake and equitable access to care are urgently needed, especially for rural, vulnerable, and/or marginalised populations. This research should occur in parallel with studies that will identify approaches to minimise vaccine hesitancy and effectively integrate care for COVID-19 with other essential health services in LMICs. ISoGH calls on the funders of health research in LMICs to consider the urgency and priority of this research during the COVID-19 pandemic and support studies that could make a positive difference for the populations of LMICs
Research priorities to reduce the impact of COVID-19 in low- and middle-income countries
publishedVersio
Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs
Full-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5′ and 3′ UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs), only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org)
Class II Transactivator (CIITA) Enhances Cytoplasmic Processing of HIV-1 Pr55Gag
The Pr55(gag) (Gag) polyprotein of HIV serves as a scaffold for virion assembly and is thus essential for progeny virion budding and maturation. Gag localizes to the plasma membrane (PM) and membranes of late endosomes, allowing for release of infectious virus directly from the cell membrane and/or upon exocytosis. The host factors involved in Gag trafficking to these sites are largely unknown. Upon activation, CD4+ T cells, the primary target of HIV infection, express the class II transcriptional activator (CIITA) and therefore the MHC class II isotype, HLA-DR. Similar to Gag, HLA-DR localizes to the PM and at the membranes of endosomes and specialized vesicular MHC class II compartments (MIICs). In HIV producer cells, transient HLA-DR expression induces intracellular Gag accumulation and impairs virus release.Here we demonstrate that both stable and transient expression of CIITA in HIV producer cells does not induce HLA-DR-associated intracellular retention of Gag, but does increase the infectivity of virions. However, neither of these phenomena is due to recapitulation of the class II antigen presentation pathway or CIITA-mediated transcriptional activation of virus genes. Interestingly, we demonstrate that CIITA, apart from its transcriptional effects, acts cytoplasmically to enhance Pr160(gag-pol) (Gag-Pol) levels and thereby the viral protease and Gag processing, accounting for the increased infectivity of virions from CIITA-expressing cells.This study demonstrates that CIITA enhances HIV Gag processing, and provides the first evidence of a novel, post-transcriptional, cytoplasmic function for a well-known transactivator
HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency
Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses
- …