41 research outputs found
Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence?
BACKGROUND: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10–15% of the reactivation cases. METHODOLOGY/PRINCIPAL FINDINGS: We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. CONCLUSIONS/SIGNIFICANCE: Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent infection
Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the ZNF804A Pathway
Importance: We investigated the variation in neuropsychological function explained by risk alleles at the psychosis susceptibility gene ZNF804A and its interacting partners using single nucleotide polymorphisms (SNPs), polygenic scores, and epistatic analyses. Of particular importance was the relative contribution of the polygenic score vs epistasis in variation explained.
Objectives To (1) assess the association between SNPs in ZNF804A and the ZNF804A polygenic score with measures of cognition in cases with psychosis and (2) assess whether epistasis within the ZNF804A pathway could explain additional variation above and beyond that explained by the polygenic score.
Design, Setting, and Participants: Patients with psychosis (n = 424) were assessed in areas of cognitive ability impaired in schizophrenia including IQ, memory, attention, and social cognition. We used the Psychiatric GWAS Consortium 1 schizophrenia genome-wide association study to calculate a polygenic score based on identified risk variants within this genetic pathway. Cognitive measures significantly associated with the polygenic score were tested for an epistatic component using a training set (n = 170), which was used to develop linear regression models containing the polygenic score and 2-SNP interactions. The best-fitting models were tested for replication in 2 independent test sets of cases: (1) 170 individuals with schizophrenia or schizoaffective disorder and (2) 84 patients with broad psychosis (including bipolar disorder, major depressive disorder, and other psychosis).
Main Outcomes and Measures: Participants completed a neuropsychological assessment battery designed to target the cognitive deficits of schizophrenia including general cognitive function, episodic memory, working memory, attentional control, and social cognition.
Results: Higher polygenic scores were associated with poorer performance among patients on IQ, memory, and social cognition, explaining 1% to 3% of variation on these scores (range, P = .01 to .03). Using a narrow psychosis training set and independent test sets of narrow phenotype psychosis (schizophrenia and schizoaffective disorder), broad psychosis, and control participants (n = 89), the addition of 2 interaction terms containing 2 SNPs each increased the R2 for spatial working memory strategy in the independent psychosis test sets from 1.2% using the polygenic score only to 4.8% (P = .11 and .001, respectively) but did not explain additional variation in control participants.
Conclusions and Relevance: These data support a role for the ZNF804A pathway in IQ, memory, and social cognition in cases. Furthermore, we showed that epistasis increases the variation explained above the contribution of the polygenic score
Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?
peer reviewedBackground
Aboveground, plants release volatile organic compounds (VOCs) that act as chemical
signals between neighbouring plants. It is now well documented that VOCs emitted by
the roots in the plant rhizosphere also play important ecological roles in the soil
ecosystem, notably in plant defence because they are involved in interactions between
plants, phytophagous pests and organisms of the third trophic level. The roles played
by root-emitted VOCs in between- and within-plant signalling, however, are still poorly
documented in the scientific literature.
Scope
Given that (1) plants release volatile cues mediating plant-plant interactions
aboveground, (2) roots can detect the chemical signals originating from their
neighbours, and (3) roots release VOCs involved in biotic interactions belowground,
the aim of this paper is to discuss the roles of VOCs in between- and within-plant
signalling belowground. We also highlight the technical challenges associated with the
analysis of root-emitted VOCs and the design of experiments targeting volatile-mediated
root-root interactions.
Conclusions
We conclude that root-root interactions mediated by volatile cues deserve more
research attention and that both the analytical tools and methods developed to study
the ecological roles played by VOCs in interplant signalling aboveground can be
adapted to focus on the roles played by root-emitted VOCs in between- and within-plant
signalling
Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms
A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia families. After all quality control checks, the analysis of 707 European-ancestry families included 1615 affected and 1602 unaffected genotyped individuals, and the analysis of all 807 families included 1900 affected and 1839 unaffected individuals. Multipoint linkage analysis with correction for marker–marker linkage disequilibrium was carried out with 5861 single nucleotide polymorphisms (SNPs; Illumina version 4.0 linkage map). Suggestive evidence for linkage (European families) was observed on chromosomes 8p21, 8q24.1, 9q34 and 12q24.1 in nonparametric and/or parametric analyses. In a logistic regression allele-sharing analysis of linkage allowing for intersite heterogeneity, genomewide significant evidence for linkage was observed on chromosome 10p12. Significant heterogeneity was also observed on chromosome 22q11.1. Evidence for linkage across family sets and analyses was most consistent on chromosome 8p21, with a one-LOD support interval that does not include the candidate gene NRG1, suggesting that one or more other susceptibility loci might exist in the region. In this era of genomewide association and deep resequencing studies, consensus linkage regions deserve continued attention, given that linkage signals can be produced by many types of genomic variation, including any combination of multiple common or rare SNPs or copy number variants in a region
Leukaemia inhibitory factor is identical to the myeloid growth factor human interleukin for DA cells
Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies
International audienceStarburst galaxies at the peak of cosmic star formation are among the most extreme starforming engines in the universe, producing stars over ~100 Myr. The star formation rates of these galaxies, which exceed 100 per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Starburst galaxies are therefore ideal targets to unravel the critical interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH, is a most useful molecule for such studies because it cannot form in cold gas without supra-thermal energy input, so its presence highlights dissipation of mechanical energy or strong UV irradiation. Here, we report the detection of CH(J=1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts z~2.5. This line has such a high critical density for excitation that it is emitted only in very dense ( cm) gas, and is absorbed in low-density gas. We find that the CH emission lines, which are broader than 1000 km s, originate in dense shock waves powered by hot galactic winds. The CH absorption lines reveal highly turbulent reservoirs of cool (K), low-density gas, extending far outside (>10 kpc) the starburst cores (radii <1 kpc). We show that the galactic winds sustain turbulence in the 10 kpc-scale environments of the starburst cores, processing these environments into multi-phase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star formation rates. Another mass input is therefore required for these reservoirs, which could be provided by on-going mergers or cold stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase instead of quenching it