193 research outputs found

    Discovery of a small molecule agonist of phosphatidylinositol 3-kinase p110α that reactivates latent HIV-1

    Get PDF
    Combination antiretroviral therapy (cART) can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4+ T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704) which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2). 57704 also increased HIV-1 expression in 3 of 4 CD8+-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110a isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency. © 2014 Doyon et al

    Histone Deacetylase Inhibitors Impair the Elimination of HIV-Infected Cells by Cytotoxic T-Lymphocytes

    Get PDF
    Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis), such as suberanilohydroxamic acid (SAHA), romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL). Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i) the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii) the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia

    Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

    Get PDF
    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 μM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART

    A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4⁺ T-Cells to Recognition by Cytotoxic T-Lymphocytes

    Get PDF
    Resting CD4⁺ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8⁺ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8⁺ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8⁺ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8⁺ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8⁺ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam₃CSK₄. In contrast, we did not observe CD8⁺ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8⁺ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8⁺ T-cells in HIV eradication strategies.United States. National Institutes of Health (AI111860

    Cell line-dependent variability in HIV activation employing DNMT inhibitors

    Get PDF
    Long-lived reservoirs of Human Immunodeficiency Virus (HIV) latently infected cells present the main barrier to a cure for HIV infection. Much interest has focused on identifying strategies to activate HIV, which would be used together with antiretrovirals to attack reservoirs. Several HIV activating agents, including Tumor Necrosis Factor alpha (TNFα) and other agents that activate via NF-kB are not fully effective in all latent infection models due to epigenetic restrictions, such as DNA methylation and the state of histone acetylation. DNA methyltransferases (DNMT) inhibitors like 5-aza-2'deoxycytidine (Aza-CdR) and histone deacetylase (HDAC) inhibitors like Trichostatin A (TSA) have been proposed as agents to enhance reactivation and have shown activity in model systems. However, it is not clear how the activities of DNMT and HDAC inhibitors range across different latently infected cell lines, potential models for the many different latently infected cells within an HIV patient. We determined HIV activation following treatment with TNFα, TSA and Aza-CdR across a range of well known latently infected cell lines. We assessed the activity of these compounds in four different Jurkat T cell-derived J-Lat cell lines (6.3, 8.4, 9.2 and 10.6), which have a latent HIV provirus in which GFP replaces Nef coding sequence, and ACH-2 and J1.1 (T cell-derived), and U1 (promonocyte-derived) cell lines with full-length provirus. We found that Aza-CdR plus TNFα activated HIV at least twice as well as TNFα alone for almost all J-Lat cells, as previously described, but not for J-Lat 10.6, in which TNFα plus Aza-CdR moderately decreased activation compared to TNFα alone. Surprisingly, a much greater reduction of TNFα-stimulated activation with Aza-CdR was detected for ACH-2, J1.1 and U1 cells. Reaching the highest reduction in U1 cells with a 75% reduction. Interestingly, Aza-CdR not only decreased TNFα induction of HIV expression in certain cell lines, but also decreased activation by TSA. Since DNMT inhibitors reduce the activity of provirus activators in some HIV latently infected cell lines the use of epigenetic modifying agents may need to be carefully optimized if they are to find clinical utility in therapies aimed at attacking latent HIV reservoirs

    Histone deacetylases in viral infections

    Get PDF
    Chromatin remodeling and gene expression are regulated by histone deacetylases (HDACs) that condense the chromatin structure by deacetylating histones. HDACs comprise a group of enzymes that are responsible for the regulation of both cellular and viral genes at the transcriptional level. In mammals, a total of 18 HDACs have been identified and grouped into four classes, i.e., class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10), class III (Sirt1–Sirt7), and class IV (HDAC11). We review here the role of HDACs on viral replication and how HDAC inhibitors could potentially be used as new therapeutic tools in several viral infections
    corecore