325 research outputs found
The evolution of postpollination reproductive isolation in Costus
Reproductive isolation is critical to the diversification of species. Postpollination barriers may be important in limiting gene flow between closely related species, but they are relatively cryptic and their evolution is poorly understood. Here, we review the role of postpollination reproductive isolation in plants, including the various stages at which it operates and the hypotheses for how it may evolve. We then review empirical studies in the plant genus Costus, evaluating documented postpollination barriers in light of these hypotheses. We summarize isolation due to parental style length differences and present evidence supporting the hypothesis that the differences are in part a by-product of selection on floral morphology. Additionally, we show that reduced pollen adhesion, germination, and tube growth contribute to reproductive isolation between two closely related sympatric species of Costus. Geographic variation in the strength of these crossing barriers supports the hypothesis that they evolved under reinforcement, or direct natural selection to strengthen isolation
Coevolution of Interacting Fertilization Proteins
Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied femaleβmale coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation
Oxytocin and Vasopressin Involved in Restraint Water-Immersion Stress Mediated by Oxytocin Receptor and Vasopressin 1b Receptor in Rat Brain
Aims: Vasopressin (AVP) and oxytocin (OT) are considered to be related to gastric functions and the regulation of stress response. The present study was to study the role of vasopressinergic and oxytocinergic neurons during the restraint waterimmersion stress. Methods: Ten male Wistar rats were divided into two groups, control and RWIS for 1h. The brain sections were treated with a dual immunohistochemistry of Fos and oxytocin (OT) or vasopressin (AVP) or OT receptor or AVP 1b receptor (V1bR). Results: (1) Fos-immunoreactive (Fos-IR) neurons dramatically increased in the hypothalamic paraventricular nucleus (PVN), the supraoptic nucleus (SON), the neucleus of solitary tract (NTS) and motor nucleus of the vagus (DMV) in the RWIS rats; (2) OT-immunoreactive (OT-IR) neurons were mainly observed in the medial magnocellular part of the PVN and the dorsal portion of the SON, while AVP-immunoreactive (AVP-IR) neurons mainly distributed in the magnocellular part of the PVN and the ventral portion of the SON. In the RWIS rats, Fos-IR neurons were indentified in 31 % of OT-IR neurons and 40 % of AVP-IR neurons in the PVN, while in the SON it represented 28%, 53 % respectively; (3) V 1bR-IR and OTR-IR neurons occupied all portions of the NTS and DMV. In the RWIS rats, more than 10 % of OTR-IR and V1bR-IR neurons were activated in the DMV, while lower ratio in the NTS. Conclusion: RWIS activates both oxytocinergic and vasopressinergic neurons in the PVN and SON, which may project to th
N-Acetylcysteine Increases the Frequency of Bone Marrow Pro-B/Pre-B Cells, but Does Not Reverse Cigarette Smoking-Induced Loss of This Subset
We previously showed that mice exposed to cigarette smoke for three weeks exhibit loss of bone marrow B cells at the Pro-B-to-pre-B cell transition, but the reason for this is unclear. The antioxidant N-acetylcysteine (NAC), a glutathione precursor, has been used as a chemopreventive agent to reduce adverse effects of cigarette smoke exposure on lung function. Here we determined whether smoke exposure impairs B cell development by inducing cell cycle arrest or apoptosis, and whether NAC treatment prevents smoking-induced loss of developing B cells.Groups of normal mice were either exposed to filtered room air or cigarette smoke with or without concomitant NAC treatment for 5 days/week for three weeks. Bone marrow B cell developmental subsets were enumerated, and sorted pro-B (B220(+)CD43(+)) and pre-B (B220(+)CD43(-)) cell fractions were analyzed for cell cycle status and the percentage of apoptotic cells. We find that, compared to sham controls, smoke-exposed mice have βΌ60% fewer pro-B/pre-B cells, regardless of NAC treatment. Interestingly, NAC-treated mice show a 21-38% increase in total bone marrow cellularity and lymphocyte frequency and about a 2-fold increase in the pro-B/pre-B cell subset, compared to sham-treated controls. No significant smoking- or NAC-dependent differences were detected in frequency of apoptotic cells or the percentage cells in the G1, S, or G2 phases of the cycle.The failure of NAC treatment to prevent smoking-induced loss of bone marrow pre-B cells suggests that oxidative stress is not directly responsible for this loss. The unexpected expansion of the pro-B/pre-B cell subset in response to NAC treatment suggests oxidative stress normally contributes to cell loss at this developmental stage, and also reveals a potential side effect of therapeutic administration of NAC to prevent smoking-induced loss of lung function
Design, recruitment, and retention of African-American smokers in a pharmacokinetic study
<p>Abstract</p> <p>Background</p> <p>African-Americans remain underrepresented in clinical research despite experiencing a higher burden of disease compared to all other ethnic groups in the United States. The purpose of this article is to describe the study design and discuss strategies used to recruit and retain African-American smokers in a pharmacokinetic study.</p> <p>Methods</p> <p>The parent study was designed to evaluate the differences in the steady-state concentrations of bupropion and its three principal metabolites between African-American menthol and non-menthol cigarette smokers. Study participation consisted of four visits at a General Clinical Research Center (GCRC) over six weeks. After meeting telephone eligibility requirements, phone-eligible participants underwent additional screening during the first two GCRC visits. The last two visits (pharmacokinetic study phase) required repeated blood draws using an intravenous catheter over the course of 12 hours.</p> <p>Results</p> <p>Five hundred and fifteen African-American smokers completed telephone screening; 187 were phone-eligible and 92 were scheduled for the first GCRC visit. Of the 81 who attended the first visit, 48 individuals were enrolled in the pharmacokinetic study, and a total of 40 individuals completed the study (83% retention rate).</p> <p>Conclusions</p> <p>Although recruitment of African-American smokers into a non-treatment, pharmacokinetic study poses challenges, retention is feasible. The results provide valuable information for investigators embarking on non-treatment laboratory-based studies among minority populations.</p
Timing Is Critical for Effective Glucocorticoid Receptor Mediated Repression of the cAMP-Induced CRH Gene
Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR) expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH) mRNA expression: cyclic AMP (cAMP) and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing βpositiveβ response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids
Sleeping with the Enemy: How Intracellular Pathogens Cope with a Macrophage Lifestyle
Sleeping with the Enemy: How Intracellular Pathogens Cope with a Macrophage Lifestyl
Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses
Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP's actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks. Β© 2014 Findlay et al
- β¦