37 research outputs found

    Effciently Compressing 3D Medical Images for Teleinterventions via CNNs and Anisotropic Diffusion.

    Get PDF
    PURPOSE: Efficient compression of images while preserving image quality has the potential to be a major enabler of effective remote clinical diagnosis and treatment, since poor Internet connection conditions are often the primary constraint in such services. This paper presents a framework for organ-specific image compression for teleinterventions based on a deep learning approach and anisotropic diffusion filter. METHODS: The proposed method, DLAD, uses a CNN architecture to extract a probability map for the organ of interest; this probability map guides an anisotropic diffusion filter that smooths the image except at the location of the organ of interest. Subsequently, a compression method, such as BZ2 and HEVC-visually lossless, is applied to compress the image. We demonstrate the proposed method on 3D CT images acquired for radio frequency ablation (RFA) of liver lesions. We quantitatively evaluate the proposed method on 151 CT images using peak-signal-to-noise ratio (PSNR), structural similarity (SSIM) and compression ratio (CR) metrics. Finally, we compare the assessments of two radiologists on the liver lesion detection and the liver lesion center annotation using 33 sets of the original images and the compressed images. RESULTS: The results show that the method can significantly improve CR of most well-known compression methods. DLAD combined with HEVC-visually lossless achieves the highest average CR of 6.45, which is 36% higher than that of the original HEVC and out-performs other state-of-the-art lossless medical image compression methods. The means of PSNR and SSIM are 70 dB and 0.95, respectively. In addition, the compression effects do not statistically significantly affect the assessments of the radiologists on the liver lesion detection and the lesion center annotation. CONCLUSIONS: We thus conclude that the method has a high potential to be applied in teleintervention applications

    Pesticide Residues

    Get PDF
    METHODOLOGY for residue analysis has advanced rapidly during the current review period, from November 1962 through October 1964. Notable progress has been made in the development and refinement of methods of analysis by which any or all of a large number of pesticide residue chemicals can be detected and measured in one general operation. This is of particular significance because great interest has developed-outside the scientific community as well as within - in the possible presence of pesticide chemicals in all parts of our environment, including man himself. Only by the use of improved methodology will it be possible to accomplish the task of detecting, identifying, and measuring the many possible residual pesticide chemicals. It is only after the presence or absence of these chemicals in any part of our environment has been proved unequivocally that the medical man, the lawyer, the lawmaker, the administrators in government and in industry, and other interested groups can assess the significance of such residues. There are 300 to 400 chemicals registered for use on food products alone, and a few hundred more are registered for other uses whereby they may become part of our environment. The chemist cannot know which of the hundreds of possible pesticide chemical residues to look for in samples of air, water, soil, plants, human and animal tissues, prepared foods, etc. There is an urgent need for general procedures that can identify and measure a large number of chemicals at one time. They must be highly sensitive and accurate, since it is essential that all monitoring of our environment be at a level considerably below any tolerance or otherwise critical level, so that trends can be more readily recognized and assessed for significance. Upward or downward trends in any portion of our environment will be recognizable only when the methodology becomes sufficiently sensitive and accurate so that analyses in the fraction-of-a-part-per-million or even part-per-billion range become routinely dependable (Fischbach, H. Pub. 1082, National Research Council, p. 55, Nov. 29,1962)

    Genome-wide association studies of cerebral white matter lesion burden

    No full text
    Objective: White matter hyperintensities (WMHs) detectable by magnetic resonance imaging are part of the spectrum of vascular injury associated with aging of the brain and are thought to reflect ischemic damage to the small deep cerebral vessels. WMHs are associated with an increased risk of cognitive and motor dysfunction, dementia, depression, and stroke. Despite a significant heritability, few genetic loci influencing WMH burden have been identified. Methods: We performed a meta-analysis of genome-wide association studies (GWASs) for WMH burden in 9,361 stroke-free individuals of European descent from 7 community-based cohorts. Significant findings were tested for replication in 3,024 individuals from 2 additional cohorts. Results: We identified 6 novel risk-associated single nucleotide polymorphisms (SNPs) in 1 locus on chromosome 17q25 encompassing 6 known genes including WBP2, TRIM65, TRIM47, MRPL38, FBF1, and ACOX1. The most significant association was for rs3744028 (pdiscovery= 4.0 × 10-9; preplication= 1.3 × 10-7; pcombined= 4.0 × 10-15). Other SNPs

    Cadherin-26 (CDH26) regulates airway epithelial cell cytoskeletal structure and polarity

    Get PDF
    Abstract Polarization of the airway epithelial cells (AECs) in the airway lumen is critical to the proper function of the mucociliary escalator and maintenance of lung health, but the cellular requirements for polarization of AECs are poorly understood. Using human AECs and cell lines, we demonstrate that cadherin-26 (CDH26) is abundantly expressed in differentiated AECs, localizes to the cell apices near ciliary membranes, and has functional cadherin domains with homotypic binding. We find a unique and non-redundant role for CDH26, previously uncharacterized in AECs, in regulation of cell–cell contact and cell integrity through maintaining cytoskeletal structures. Overexpression of CDH26 in cells with a fibroblastoid phenotype increases contact inhibition and promotes monolayer formation and cortical actin structures. CDH26 expression is also important for localization of planar cell polarity proteins. Knockdown of CDH26 in AECs results in loss of cortical actin and disruption of CRB3 and other proteins associated with apical polarity. Together, our findings uncover previously unrecognized functions for CDH26 in the maintenance of actin cytoskeleton and apicobasal polarity of AECs

    Transfer of IP₃ through gap junctions is critical, but not sufficient, for the spread of apoptosis.

    No full text
    Decades of research have indicated that gap junction channels contribute to the propagation of apoptosis between neighboring cells. Inositol 1,4,5-trisphosphate (IP₃) has been proposed as the responsible molecule conveying the apoptotic message, although conclusive results are still missing. We investigated the role of IP₃ in a model of gap junction-mediated spreading of cytochrome C-induced apoptosis. We used targeted loading of high-molecular-weight agents interfering with the IP₃ signaling cascade in the apoptosis trigger zone and cell death communication zone of C6-glioma cells heterologously expressing connexin (Cx)43 or Cx26. Blocking IP₃ receptors or stimulating IP₃ degradation both diminished the propagation of apoptosis. Apoptosis spread was also reduced in cells expressing mutant Cx26, which forms gap junctions with an impaired IP₃ permeability. However, IP₃ by itself was not able to induce cell death, but only potentiated cell death propagation when the apoptosis trigger was applied. We conclude that IP₃ is a key necessary messenger for communicating apoptotic cell death via gap junctions, but needs to team up with other factors to become a fully pro-apoptotic messenger.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore