11 research outputs found

    A 'snip' in time: what is the best age to circumcise?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circumcision is a common procedure, but regional and societal attitudes differ on whether there is a need for a male to be circumcised and, if so, at what age. This is an important issue for many parents, but also pediatricians, other doctors, policy makers, public health authorities, medical bodies, and males themselves.</p> <p>Discussion</p> <p>We show here that infancy is an optimal time for clinical circumcision because an infant's low mobility facilitates the use of local anesthesia, sutures are not required, healing is quick, cosmetic outcome is usually excellent, costs are minimal, and complications are uncommon. The benefits of infant circumcision include prevention of urinary tract infections (a cause of renal scarring), reduction in risk of inflammatory foreskin conditions such as balanoposthitis, foreskin injuries, phimosis and paraphimosis. When the boy later becomes sexually active he has substantial protection against risk of HIV and other viral sexually transmitted infections such as genital herpes and oncogenic human papillomavirus, as well as penile cancer. The risk of cervical cancer in his female partner(s) is also reduced. Circumcision in adolescence or adulthood may evoke a fear of pain, penile damage or reduced sexual pleasure, even though unfounded. Time off work or school will be needed, cost is much greater, as are risks of complications, healing is slower, and stitches or tissue glue must be used.</p> <p>Summary</p> <p>Infant circumcision is safe, simple, convenient and cost-effective. The available evidence strongly supports infancy as the optimal time for circumcision.</p

    Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates

    No full text
    Alphaviruses are animal viruses holding great promise for biomedical applications as drug delivery vectors, functional imaging probes, and nanoparticle delivery vesicles because of their efficient in vitro self-assembly properties. However, due to their complex structure, with a protein capsid encapsulating the genome and an outer membrane composed of lipids and glycoproteins, the in-vitro self-assembly of virus-like particles, which have the functional virus coat but carry an artificial cargo, can be challenging. Fabrication of such alphavirus-like particles is likely to require a two-step process: first, the assembly of a capsid structure around an artificial core, second the addition of the membrane layer. Here we report progress made on the first step: the efficient self-assembly of the alphavirus capsid around a functionalized nanoparticle core
    corecore