139 research outputs found

    Psammocarcinoma of ovary with serous cystadenofibroma of contralateral ovary: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Psammocarcinoma of ovary is a rare serous neoplasm characterized by extensive formation of psammoma bodies, invasion of ovarian stroma, peritoneum or intraperitoneal viscera, and moderate cytological atypia. Extensive medlar search showed presence of only 28 cases of psammocarcinoma of ovary reported till date.</p> <p>Case presentation</p> <p>We herein report a case of psammocarcinoma of ovary with serous cystadenofibroma of contralateral ovary in a 55 year old Asian Indian female.</p> <p>Conclusion</p> <p>To the best of author's knowledge, ours is the rare case describing coexistence of this very rare malignant serous epithelial tumor with a benign serous cystadenofibroma of contralateral ovary.</p

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Reversed flow of Atlantic deep water during the Last Glacial Maximum

    Get PDF
    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies1, 2 and recent model simulations3 indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic 231Pa/230Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength4, 5, 6. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in 231Pa/230Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of 231Pa/230Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC—with a prominent southerly flow of deep waters originating in the North Atlantic—arose only during the Holocene epoch

    Antenatal HIV-1 RNA load and timing of mother to child transmission; a nested case-control study in a resource poor setting

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To determine HIV-1 RNA load during the third trimester of pregnancy and evaluate its effect on <it>in utero </it>and intra-partum/postpartum transmissions in a breastfeeding population.</p> <p>Design</p> <p>A nested case-control study within a PMTCT cohort of antiretroviral therapy naive pregnant women and their infants.</p> <p>Methods</p> <p>A case was a mother who transmitted HIV-1 to her infant (transmitter) who was matched to one HIV-1 positive but non-transmitting mother (control).</p> <p>Results</p> <p>From a cohort of 691 pregnant women, 177 (25.6%) were HIV-1 positive at enrolment and from these 29 (23%) transmitted HIV-1 to their infants, 10 and 19 during <it>in utero </it>and intra-partum/postpartum respectively. Twenty-four mothers sero-converted after delivery and three transmitted HIV-1 to their infants. Each unit increase in log<sub>10 </sub>viral load was associated with a 178 cells/mm<sup>3 </sup>and 0.2 g/dL decrease in TLC and hemoglobin levels, p = 0.048 and 0.021 respectively, and a 29% increase in the risk of transmission, p = 0.023. Intra-partum/postpartum transmitters had significantly higher mean viral load relative to their matched controls, p = 0.034.</p> <p>Conclusion</p> <p>Antenatal serum HIV-1 RNA load, TLC and hemoglobin levels were significantly associated with vertical transmission but this association was independent of transmission time. This finding supports the rationale for preventive strategies designed to reduce vertical transmission by lowering maternal viral load.</p

    A niche remedy for the dynamical problems of neutral theory

    Full text link
    We demonstrate how niche theory and Hubbell's original formulation of neutral theory can be blended together into a general framework modeling the combined effects of selection, drift, speciation, and dispersal on community dynamics. This framework connects many seemingly unrelated ecological population models, and allows for quantitative predictions to be made about the impact of niche stabilizing and destabilizing forces on population extinction times and abundance distributions. In particular, the existence of niche stabilizing forces in our blended framework can simultaneously resolve two major problems with the dynamics of neutral theory, namely predictions of species lifetimes that are too short and species ages that are too long.Comment: 47 pages, 4 figures, Accepted to Theoretical Ecolog

    Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids:Invited Review

    Get PDF

    Water balance creates a threshold in soil pH at the global scale

    Full text link
    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate
    • 

    corecore