8 research outputs found
Auxin pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment explants
We have developed a new, simple,
quick and genotype-independent method for direct
regeneration of sugarcane using novel midrib
segment explants. Our protocol involves two
steps: the pretreatment of starting material on MS
(Murashige and Skoog (1962) Physiol Plant
15:473–497) medium containing 3.0 mg/l 2,4-
dichlorophenoxyacetic acid (2,4-D) for 8 days
under continuous dark and subsequent transfer of
the explants to MS medium augmented with
0.1 mg/l benzyladenine (BA) and 0.1 mg/l naphthaleneacetic
acid (NAA) under light-dark conditions.
On the regeneration medium, numerous
globular structures appeared from the explants
and subsequently differentiated into shoots.
Regenerated shoots attained 2–5 cm height
within 30 days of culture initiation and readily
rooted on MS basal medium. Hardened plants
were successfully established in the greenhouse.
The regulation of sugarcane morphogenesis by
auxin pretreatment is discussed
Not Available
Not AvailableThe present study was carried out with the objective to validate the molecular markers, which have been previously reported to be linked to fertility restorer (Rf) gene(s) for WA-CMS lines of rice. Two mapping populations involving fertility restorer lines for WA-cytoplasm, viz., (i) an F2 population derived from the cross IR58025A/KMR3R consisting of 347 plants and (ii) a BC1F1 population derived from the cross IR62829A/IR10198R//IR62829A consisting of 130 plants were analyzed. Nine SSR and three CAPS markers reported to be linked to Rf genes along with two previously unreported SSR markers were analyzed in the mapping populations. In both the populations studied, the trait of fertility restoration was observed to be under digenic control. Eight SSR markers (RM6100, RM228, RM171, RM216, RM474, RM311, MRG4456 and pRf1&2) showed polymorphism between the parents of the F2 population, while the SSR markers RM6100 and RM474 showed polymorphism between the parents of both the F2 and BC1F1 populations. Only one CAPS marker, RG146FL/RL was polymorphic between the parents of the BC1F1 population. RM6100 was observed to be closely segregating with fertility restoration in both the mapping populations and was located at a distance of ~1.2 cM. The largest phenotypic variation was accounted for the region located between RM311 and RM6100. Using the marker-trait segregation data derived from analysis of both the mapping populations, a local linkage map of the genomic region around Rf-4, a major fertility restoration locus on Chromosome 10 was constructed, and RM6100 was observed to be very close to the gene at a distance of 1.2 cM. The accuracy of the marker RM6100 in predicting fertility restoration was validated in 21 restorers and 18 maintainers. RM6100 amplified the Rf-4 linked allele in a majority of the restorers with a selection accuracy of 94.87%. Through the present study, we have established the usefulness of the marker RM6100 in marker-assisted selection for fertility restoration in segregating populations and identification of restorers while screening rice germplasm for their fertility restoration ability.Not Availabl